When a blood vessel is cut, the body activates a repair mechanism that eventually seals the cut and prevents further blood loss. This life saving process becomes life threatening when clots form inside a functional blood vessel. Arrest of bleeding works through platelet adhesion and thrombin-induced fibrin formation at the site of injury. In order for the platelets to stick to the injured tissues and to each other, they need to be activated. Thrombin is an essential protease (a type of enzyme) that activates platelets and forms blood clots in response to vascular injury.
Approximately 1,700 scientists visit SSRL annually to conduct experiments in broad disciplines including life sciences, materials, environmental science, and accelerator physics. Science highlights featured here and in our monthly newsletter, Headlines, increase the visibility of user science as well as the important contribution of SSRL in facilitating basic and applied scientific research. Many of these scientific highlights have been included in reports to funding agencies and have been picked up by other media. Users are strongly encouraged to contact us when exciting results are about to be published. We can work with users and the SLAC Office of Communication to develop the story and to communicate user research findings to a much broader audience. Visit SSRL Publications for a list of the hundreds of SSRL-related scientific papers published annually. Contact us to add your most recent publications to this collection.
With the completion of the Human Genome Project and the emerging proteomics era, the biosciences community is beginning the daunting task of understanding the structures and the structure-function relations of collections of interacting proteins. Cellular activity, which is tightly regulated, often results from protein-protein and protein-nucleic acid interactions, leading to the formation of large assemblies of biomolecules for distinct functions. Examples include DNA condensation during the cell cycle, and bundle and network formation of filamentous actin proteins in cell attachment, motility, and cytokinesis.
A new technology that acts like a giant underground filter is successfully beginning to clean up the uranium contaminating an aquifer in a remote Utah canyon. Uranium contamination in groundwater is a serious problem because the toxic metal can travel long distances in underground aquifers, which are vital sources of fresh water for people, animals and agriculture. Recent research at SSRL showed that the filters-called PRBs (permeable reactive barrier) do intercept uranium, but in an unexpected way that has important implications for monitoring, costs, and future technology selection.
A team headed by Timothy Stemmler of Wayne State University's School of Medicine and Amy Rosenzweig at Northwestern University, has isolated a new form of a bacterial enzyme that efficiently converts methane to methyl alcohol. This enzyme is isolated from methanotropic bacteria, which are found in soil, landfills, groundwater, seawater, hot springs and even the Antarctic.
Aircraft turbine engines are prone to ingesting pebbles and other debris that can damage jet engine fan blades, dramatically reducing the longevity of the components - sometimes catastrophically. Failures associated with such "foreign object damage" cost the aerospace industry an estimated $4 billion a year. Studies at SSRL have helped show how and why fan blades - which normally experience significant stresses during flying - fatigue sooner than expected from foreign object damage.
SSRL has played an important role in characterizing a family of enzymes that detoxify heroin and cocaine, and have the potential to metabolically eliminate the nerve poisons sarin, soman, and tabun, which have claimed thousands of lives. Using x-ray crystallographic data, the Redinbo group at the University of North Carolina at Chapel Hill has uncovered the specific and general ways the carboxylesterase enzymes bind to those dangerous substances.
The presence of "methyl mercury" in fish is well-known, but until now the detailed chemical identity of the mercury has remained a mystery. In an x-ray absorption spectroscopy study published in the August 29 issue of Science (Science 301, 2003: 1203;Science now: Murky Picture on Fish Mercury), SSRL scientists report that the chemical form of mercury involves a sulfur atom (most likely in a so-called aliphatic form). The study presents significant new knowledge - because the toxic properties of mercury (or any element) are critically dependent upon its chemical form - and represents an important milestone in developing an understanding of how harmful mercury in fish might actually be. The study was carried out by SSRL staff scientists Ingrid Pickering and Graham George and postdoctoral fellow Hugh Harris using SSRL's structural molecular biology beam line 9-3. The very high flux, excellent beam stability and state-of-the-art detector technology allowed the team to measure samples of fish containing micromolar levels of mercury, much lower than had previously been possible.
SSRL scientists have determined key binding sites in an enzyme family common to Anthrax, Botulism, Syphilis, Diarrhea and Lyme's disease. The protein x-ray crystallography data have already enabled the scientists to create a computer model of a molecule that could inhibit the enzyme's activity, which is essential for many single-celled organisms to replicate.
Electron transfer, the process of moving an electron from one place to another, is vital to almost all chemical systems. It is a fundamental process in organic synthesis, in catalysis, and in the biochemistry of all living organisms. In biological systems, transition metal centers (such as iron and copper) often play the central role in an electron transfer protein, shuttling electrons within or between proteins.
Industrial activities have led to widespread chromium (Cr) contamination in the environment. Although Cr is an essential element for humans, the hexavalent form is toxic, mutagenic and carcinogenic. Consequently, the presence of Cr in the environment poses a serious threat to human and animal welfare. However, the toxicity of Cr is a function of oxidation state. For example, hexavalent Cr has a high solubility in soils and groundwater and, as a consequence, tends to be mobile in the environment.