You are here

Scientific Highlights

Amyloid, composed largely of mis-folded proteins that form insoluble fibrillar aggregates, is important to many human diseases including Alzheimer’s. Tooth decay also features amyloid-forming proteins, but in this case it is not mis-folded human amyloid proteins but bacterial proteins that are not mis-folded when they aggregate into functional amyloid polymers. The most common infectious disease in humans, tooth decay, involves the formation of microbial communities in biofilms on teeth.
Clostridium difficile (C. diff) is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted, often seen in seriously ill or elderly patients. Clostridium difficile infection (CDI) has become the most common cause of antibiotic-associated diarrhea and gastroenteritis-associated death in developed countries, accounting for a half-million cases and 29,000 deaths annually in the US. It is considered an “urgent threat” by the CDC.
Chromatin is the complex of DNA and proteins that comprises the physiological form of the genome. Non-covalent interactions between DNA and histone proteins are necessary to compact large eukaryotic genomes into relatively small cell nuclei. The nucleosome is the fundamental repeating unit of chromatin, and is composed of 147bp of DNA wrapped around an octamer of histone proteins: 2 copies of each H2A, H2B, H3 and H4.
Microtubules (MTs) are sub-cellular structures made of the protein tubulin. They have important roles in moving organelles around the cell and in chromosome segregation before cell division. MTs can exist in two states, either a dynamic state of growing and shrinking MTs or a stable state. MTs can also form complex bundles that can be found in neuronal axons. The neuronal protein Tau helps facilitate this process and has been implicated in some neurodegenerative disorders like Alzheimer’s disease. Yet Tau’s exact role in MT formation and bundling is unclear: different experiments (both in vivo and cell free) have shown Tau to mediate either attractive or repulsive forces between MTs.
RNA molecules, often bound to protein in complexes, play essential roles in many basic cellular processes in all life. Like with proteins, often these roles depend on the distinct 3-dimensional shapes the RNA molecules adopt. While much research has been done using traditional biophysical techniques to determine the predominant structure of many RNA folds, less is known about the array of shapes a certain type of RNA can adopt and how this ensemble of form affects function.