Time-resolved Spectroscopy of Laser-heated Copper Foils

Tuesday, July 16, 2013 - 11:00am

Presented by Kelly Cone,
PhD Engineering, Dept. of Applied Science, University of California, Davis

The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated by a plasma produced using the Lawrence Livermore National Laboratory’s Compact Multipulse Terawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800 - 1450 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

Find Stanford Synchrotron Radiation Lightsource on TwitterFind Stanford Synchrotron Radiation Lightsource on YouTubeFind Stanford Synchrotron Radiation Lightsource on Flickr