Dichotomous Electrons: Travelling without Moving

Wednesday, July 10, 2024 - 3:00pm

053-2002 Berryessa Conference Room

Zoom:

Join from PC, Mac, Linux, iOS or Android: https://stanford.zoom.us/j/94528038263?pwd=7o5VjVVHXFvaeokQHLfOHbQz6c430Y.1
    Password: 377740

Or iPhone one-tap (US Toll): +18333021536,,94528038263# or +16507249799,,94528038263#

Or Telephone:
    Dial: +1 650 724 9799 (US, Canada, Caribbean Toll) or +1 833 302 1536 (US, Canada, Caribbean Toll Free)
          
    Meeting ID: 945 2803 8263
    Password: 377740
    International numbers available: https://stanford.zoom.us/u/aT28Um4fh

    Meeting ID: 945 2803 8263
    Password: 377740
    SIP:
    Password: 377740

Speaker: Marc Janoschek, Paul Scherrer Institute & Universität Zürich

Program Description

In quantum materials, electrons may appear to be simultaneously in motion and stopped. An extensive body of experimental and theoretical work has demonstrated that the exotic and frequently functional properties of quantum materials exactly arise thanks to this electronic dichotomy. Unravelling the duality of electrons is therefore crucial to understand quantum matter states and exploit their full potential for future applications; yet, relevant models are notoriously difficult to calculate and validate for real materials. Here we address this challenge for the iconic Kondo lattice model (KLM), which describes the coherent entanglement of localized electrons leading to magnetic moments with itinerant conduction electrons in strongly correlated metals. Exploiting the spectroscopic power of XAS, ARPES, and RIXS [1], as well as neutron spectroscopy [2], we demonstrate that state-of-the-art electronic structure calculations may now calculate salient properties for real KLM materials quantitatively.

[1] M. C. Rahn, K. Kummer, A. Hariki, K.-H. Ahn, J. Kunes, A. Amorese, J. D. Denlinger, D.-H. Lu, M. Hashimoto, E. Rienks, M. Valvidares, F. Haslbeck, D. D. Byler, K. J. McClellan, E. D. Bauer, J.-X. Zhu, C. H. Booth, A. D. Christianson, J. M. Lawrence, F. Ronning, and M. Janoschek, Nature Communications 13,  6129 (2022).

[2] W. Simeth, Zhentao Wang, E. A. Ghioldi, D. M Fobes, A. Podlesnyak, E. D. Bauer, J. Lass, J. Vonka, C. Niedermayer, D. Mazzone, Yusuke Nomura, Ryotaro Arita, C. D. Batista, R. Ronning, and M. Janoschek, Nature Communications 14, 8239 (2023).

Dichotomous Electrons: Travelling without Moving
Find Stanford Synchrotron Radiation Lightsource on TwitterFind Stanford Synchrotron Radiation Lightsource on YouTubeFind Stanford Synchrotron Radiation Lightsource on Flickr