Environmental Sciences

Long-term Evolution of Noncrystalline Uranium in Lake Sediments

June 30, 2021

Uranium contamination in our environment is a serious threat to public health. Successfully managing the problem to mitigate health impacts requires an understanding of how environments affect the different forms of uranium, the chemical reactions at work, and the molecular species that are created over time.

Copper and Zinc Forms in Bottom Ash from Solid Waste Incineration

March 31, 2021

When trash is burned for energy, a residue called bottom ash (BA) is left behind. Each year the European Union alone creates millions of tons of BA, which can be used for construction after treatment. It is concerning that BA may contain metals like copper and zinc that leach into the environment, potentially harming wild life and, people. The amount of these metals in the ash does not indicate whether the material is a potential hazard since these metals are more or less able to mobilize into the surrounding environment depending on factors like pH and the solubility of their chemical form. To better understand which chemical forms of copper and zinc exist in bottom ash and if there is much variation between different ashes, a team of scientists from Sweden analyzed six samples from different waste-to-energy plants.

Modern Methods Applied to a Past Poisoning at Minamata Japan

August 31, 2020

In the 1950’s and 60’s a poisoning occurred in Minamata Japan.  In addition to the people, the local cat population was affected with what was called “Dancing Cat Disease” and shortly thereafter neurological signs and symptoms became more prominent in people.  The sickness became known as Minamata Disease.  Eventually it was shown to be a form of organic mercury poisoning.  During the episode, pregnant women who were minimally or not obviously affected delivered infants who had neurological disorders such as seizures, microcephaly, and cerebral palsy.

The local company that caused the pollution employed a physician who played a role in determining the cause.  He found that cats fed chemical effluent from the factory quickly developed signs similar to those seen in people with Minamata Disease. He preserved samples of brain tissue from one of the cats, and remarkably, these samples still exist. An international team of researchers used sophisticated modern techniques to analyze these samples and determine the chemical form of mercury within the tissue.

Large-Scale Production of 119mTe and 119Sb for Radiopharmaceutical Applications

May 31, 2019

Radioisotope therapies improve on traditional chemotherapies by being finely targeted to only the diseased cells and leaving surrounding healthy cells unharmed. A promising radioisotope for therapeutic uses is 119Sb, which releases low energy Auger electrons that can kill cancer cells. A problem with widespread use of drugs using 119Sb is its short half-life of around 38 hours. A team of scientists from Los Alamos National Laboratory have developed a novel strategy for utilizing 119Sb.

Copper Mobilization and Immobilization along an Organic Matter and Redox Gradient – Insights from a Mofette Site

January 31, 2019

While a small amount of copper is essential for living organisms, too much copper contaminating our soils can be toxic and pose a serious problem. Copper has an affinity for organic matter in soils, where it mainly exists in the two redox states Cu(I) and Cu(II). In soils that fluctuate in redox conditions, the mobility of copper through the environment can be hard to predict. Mofette sites, produced by CO2 degassing usually found in seismically active areas, are good natural laboratories due to their wide range of soil redox conditions and of soil organic matter composition within a small area. Near the sites of CO2 degassing, the soil is anoxic and organic matter does not decompose well. The soils transition to oxic conditions just a few meters away. A team of researchers studied the behavior of copper in the natural gradient of a mofette site in the Czech Republic.

Gold Nanoparticle Biodissolution by a Freshwater Macrophyte and Its Associated Microbiome

September 30, 2018

Nanotechnology, which focuses on materials that measure between 1 and 100 nanometers in at least one dimension, is being applied to diverse areas of research including medicine, electronics, and biology. Yet it is unclear how these engineered nanomaterials might interact with and affect environments and ecosystems.

Thermodynamic Preservation of Carbon in Anoxic Environments

May 31, 2017

While scientists recognize that oxygen-free soil stores large amounts of carbon, knowledge about the processes that protect and preserve carbon-rich molecules in these environments is lacking. In oxygen-rich soil, microbes break down organic molecules through aerobic respiration, allowing carbon to escape the ground as carbon dioxide gas.

Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs

March 31, 2017

Coal-ash spills in Tennessee and North Carolina rivers have prompted concerns that toxic trace elements like arsenic could be concentrated in the food web to potentially affect humans. At the base of these freshwater food webs are periphyton biofilms, which contain a complex ecosystem of micro-organisms including bacteria, fungi, diatoms, and algae. Such biofilms can concentrate trace elements hundreds to thousands of times. To investigate whether arsenic concentrated in biofilms is propagated up the food chain, a team of scientists has studied the bioavailability of arsenic to organisms that feed on the periphyton biofilms.

Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge

February 29, 2016

The practice of storing reclaimed or storm water by refilling an aquifer is called managed aquifer recharge (MAR). Advantages of MAR to regions vulnerable to drought or which have depleted aquifers include water storage for future use, reduced water loss of stored water from evaporation, and stabilization of the aquifers. However, refilling aquifers can change the chemistry, allowing naturally occurring toxins in aquifer sediments to dissolve into the water. Arsenic, a potential poison, is of particular concern, since use of MAR has led to arsenic-contaminated water.

Biotic-Abiotic Pathways: A New Paradigm for Uranium Reduction in Sediments

March 31, 2013

As part of a larger, DOE-funded investigation into bioremediation of uranium in contaminated aquifers, a group of SSRL scientists made a surprising discovery about how uranium ions behave in the environment. In addition to overturning current scientific models, this research will lead to more efficient, less costly methods for uranium cleanup and mining.

The Chemistry of Bromine in Terrestrial and Marine Environments

November 30, 2012

Recent work at SSRL has helped reveal a previously unrecognized wealth of bromine chemistry in the environment, where bromine in seawater has long been thought to exist as inorganic bromide, while bromides in soil were considered so unreactive that they've routinely been used as a hydrological tracer.

The reality bromine chemistry in the environment is much more complex. X-ray absorption spectroscopic (XAS) studies conducted by Leri, et al. at SSRL Beam Lines 2-3 and 4-3, as well as at the ALS and NSLS, reveal a complicated association between bromine and organic carbon in both sea water and soil.

Structural Determination of Marine Bacteriogenic Manganese Oxides

August 31, 2005

Manganese oxides form in the oceanic water column as a result of the bacterially catalyzed oxidation of a relatively abundant form of dissolved manganese. As they settle through the water column, manganese oxides participate in myriad chemical reactions important to sea life and to maintaining the trace-metal composition of sea water. These reactions profoundly impact the geochemical cycling of carbon, nitrogen, sulfur, nutrients and containments.

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes

June 30, 2005

Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, with high exposure levels resulting in damage to the brain, heart, kidneys, lungs, and immune system. Young children and unborn babies are particularly vulnerable to mercury, which can affect their nervous systems and impair their neurological development. As a result, mercury is one of the most strictly regulated pollutants by the Environmental Protection Agency (EPA), which controls mercury emissions from coal-fired power plants and issues consumption advisory warnings for various types of fish, the primary route of mercury exposure to humans

Remediation of Uranium-contaminated Ground Water at Fry Canyon, Utah

November 28, 2003

A new technology that acts like a giant underground filter is successfully beginning to clean up the uranium contaminating an aquifer in a remote Utah canyon. Uranium contamination in groundwater is a serious problem because the toxic metal can travel long distances in underground aquifers, which are vital sources of fresh water for people, animals and agriculture. Recent research at SSRL showed that the filters-called PRBs (permeable reactive barrier) do intercept uranium, but in an unexpected way that has important implications for monitoring, costs, and future technology selection.

Defining the processes controlling arsenic uptake by rice (Oryza sativa L.)

November 29, 2010

Rice, the grain that provides more than one-fifth of the world population's calories, can become a health hazard if contaminated with arsenic. Such contamination, a surprisingly widespread occurrence, takes place in areas where soil or irrigation water is tainted by naturally occurring arsenic--including broad swaths of south and southeastern Asia. Studies have suggested that the natural iron coating around the roots of rice plants may serve as an important barrier to arsenic uptake because arsenic in its oxidized form has an affinity for iron. A team of Stanford and SSRL researchers recently sought to learn just how significant a barrier iron provides.

Estimating Cr(VI) in Coal-Derived Fly-Ash

June 27, 2011

The element chromium is found in the environment in two common forms: Cr(VI), which is easily absorbed by the human body, and Cr(III), which is not. The first of these in the form of chromates can have severe adverse effects on the human body, including cancerous tumor formation and gene damage.  Normally Cr(VI) forms are not present in the approximately one billion tons of coal used annually for electricity generation in the U.S., however, a fraction of the Cr(III) in coal can become oxidized during coal combustion ending up as a Cr(VI) component in fly-ash, the major waste product from coal combustion. 

Techniques for Identifying and Mapping Iron Species in Geologic Samples

August 29, 2011

Iron, one of the most abundant metals on Earth’s surface, often dominates the reactivity of rocks, soils and sediments, and is important in many biogeochemical processes.  A great challenge for biogeochemists is to identify the iron species in these natural materials at very small scales and to track changes in the iron species as these materials react with water.

SSRL Studies Aid Environmental Cleanup at Rocky Flats

May 31, 2002

The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1).  Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site.  Until December 1989, the Rocky Flats Plant made components for nuclear weapons using various radioactive and hazardous materials, including plutonium, uranium and beryllium. Nearly 40 years of nuclear weapons production left behind a legacy of contaminated facilities, soils, and ground water.  More than 2.5 million people live within a 50 mile radius of the site; 300,000 of those live in the Rocky Flats watershed.

Formation of Chlorinated Hydrocarbons in Weathering Plant Material

March 29, 2002

When we think of chlorine, we often relate it to the salt used in food preparation, chloride in the oceans, chlorine gas from swimming pools, and gaseous chlorofluorocarbons that have close links to the depletion of stratospheric ozone. We rarely think of thousands of chlorinated hydrocarbons that exist in the natural systems, several of which are highly toxic to humans (1). The C-Cl bond, common to all organo-Cl compounds, is strong and gives high stability to organo-Cl compounds. For this reason, several organo-Cl compounds have been synthesized and used extensively for years in agricultural and industrial applications.

Intercation of Toxic Metals with Complex BioFilm/Mineral/Solution Interfaces

November 30, 2001

Sorption reactions on particle surfaces can dramatically affect the speciation, cycling and bioavailability of essential micronutrients (i.e. PO43-, Cu, Zn etc.) and toxic metals and metalloids (i.e. Pb, Hg, Se, As) in soils and aquatic environments. Considerable attention has been focused on understanding metal sorption reactions at a molecular/mechanistic level and the effects of metal concentration, pH, ionic strength, and complexing ligands on the ways in which metal ions bind to the surfaces of common mineral phases such as Fe-, Mn- and Al-(hydr)oxides and clays. However, a significant fraction of mineral surfaces in natural environments are extensively colonized by microbial organisms, which can also be potent sorbents for metals due to the large number of reactive functional groups that decorate the cell walls and outer membranes of bacterial surfaces. 

Subscribe to Environmental Sciences