Commissioning Simulations Using GINGER

William M. Fawley
Lawrence Berkeley National Laboratory
Presented to the LCLS Undulator Diagnostics

and Commissioning Workshop 19-20 January 2004

"An expert is someone who has already made all the mistakes"

(attributed to Edward Teller by LLNL folklore)

- LCLS commissioning should be based (in part) on previous TTF-1, LEUTL, VISA, *etc.*, experiences
- LCLS personnel should obtain operational experience on working FEL's (e.g. TTF-2, VISA-2, LEUTL, JLAB FEL, etc.)
- TTF-2 in particular may give invaluable pointers to LCLS, partially illuminating any "unknown unknowns" below 100-nm
- Continual and unavoidable problem of being forced by project scheduling pressure to make premature decisions while having insufficient information --- balancing the tradeoffs between future flexibility and cost is stressful

Information Numerical FEL Simulation can Provide During LCLS Commissioning

- Quick surveys of P(z), L_{gain} sensitivity to e-beam properties
 - Sensitivity to Q, I, \mathcal{E} , $\langle x \rangle$, $\langle y \rangle$, $\Delta \gamma$, wakefields
 - Sensitivity to local and "global" (i.e. rms) $\Delta K/K$ (including both trajectory and longitudinal phase drift errors)
- Detailed predictions for coherent intensity I(r,z,t) or I(x,y,z,t)
 - Power spectra $P(\omega)$ and $\sigma_{\omega}(z)$
 - Far field opening angle
 - Autocorrelation functions, FROG/chirp details
 - Predictions for harmonics including (heightened) sensitivity to e-beam parameters
 - Statistical properties of SASE radiation, shot-to-shot and within a given shot for both power and spectrum

Close Collaboration Needed between Diagnosticians, Theorists/Simulationists, and Experimentalists

- Past efforts on obtaining deep agreement between simulation and experiment (e.g. VISA, TTF-1) has happened only after making good measurements and S2E simulation for both the e-beam and radiation output
- In commissioning experiment design, simulationists need to understand what is obtainable from the experiment and, conversely, experimentalists/diagnosticians should understand what measurements are meaningful for comparison with theory
- Just like voting in Chicago, "S2E dry run experiments" should be done early and often
 - Smooth interfaces needed between codes (and different owners/labs)
 - Diagnostic data formats should be publicized well in advance of actual commissioning

It's easy to do an experiment; it's hard to do a meaningful one (Berkner's Second Law)

Current State of the GINGER Code

- Full 3D e-beam; axisymmetric radiation field
- Full SVEA time-dependence
- Can import ELEGANT data: both envelope parameters *and* macroparticles for highly detailed, time-dependent 5D phase space reconstruction
- Models for wakefield and wiggler error
- Can split full polychromatic simulation of "long" e-beam pulse into many separate runs via a "multi-segment" mode
- Fully parallel; runs efficiently on MPP machines (e.g. IBM-SP)
- Graphical, SDDS-formatted and simple ASCII table output all available from post-processor
- Up-to-date user manual (new release late Jan. '04)

Full LCLS Pulse Simulation with GINGER

1-nC LCLS e-beam 5D phase space reconstructed from Emma'a ICFA03-S2E ELEGANT run with CSR

12-as temporal resolution ~20,000 slices for full SASE simulation --- run primarily in parallel mode on IBM-SP

Monochromatic amplifier runs to z=140 m for 0.15 nm & 1.5 nm with std. drift spaces

Some (Likely) Near-to-Mid Term Improvements to GINGER

- Spontaneous emission energy losses
- Harmonic radiation emission
- 3-D radiation solver via azimuthal mode decomposition (i.e. $r-\theta-z-t$)
- More generalized/robust treatment of optical & magnetic elements
 - Apertures, lenses, monochromators
 - R-matrix treatments of magnetic elements (e.g. chicanes, quads)
- More flexible/efficient format for GINGER disk output
 - > Reduced file size
 - Self-describing (but not "classic" SDDS) format
- Some changes needed by LBNL/LUX, some by LCLS, some by others (e.g. MIT/BATES, Trieste/ELETTRA, etc.)

The Difficulties of Multiple Exponentials

- Even in the absence of undulator/quad/BPM and e-beam mismatch errors, L_{gain} will vary along the LCLS pulse
 - Different portions will have differing sensitivities to all different types of errors, especially in terms of saturation length
 - This was seen in the recent BNL UV HGHG experiment
- Without time-resolved power diagnostics, it may be very difficult to determine: (1) Is there a problem in L_{gain} or L_{sat} (or both)? (2) If so, where in z did that problem arise?
- Commissioning the undulator in ≥ 3 stages may ease this difficulty
- It would be nice to have a temporally "isolated" pulse portion lase (with nearly constant e-beam properties)
 - similar to some LCLS short pulse ideas

Systems should be brought on line systematically, or sometimes the tortoise beats the hare. (Berkner's Fourth Law)

Simple S2E Amplifier Run Illustrating P(t)Sensitivity to Variation in E-Beam Properties

Some Errors Might Be (Infuriatingly) Difficult to Diagnose and Isolate

- Although trajectory errors diagnosis and correction via BBA seem to be well in hand, there may be other nasty errors out there
- Example: a ~150 micron vertical offset in 1 undulator segment
 - Sufficient to red-shift the local resonant λ by greater than $\rho\lambda$
 - Effect should reduce gain locally + increase L_{sat}
 - Not easily detectable in trajectory (quads dominate focusing)
 - Virtually undetectable in local P(z) growth in first 3-5 gain lengths
 - Probably non-localizable in latter half of undulator by looking for increase in gain length or shift in average wavelength
 - Alternate conclusions: mistuning in microtaper or slight emittance growth

One shouldn't jump to conclusions from preliminary data (Berkner's Seventh Law)

Some additional suggestions/observations

- Workshops and informal semi-regular get-togethers are a good way to stimulate LCLS-related work from non-SLAC people
 - ~bi-monthly meeting on S2E and FEL ⇔ diagnostic issues/goals could vastly improve progress/communication
 - Team-building sounds corny but it's better than no team at all
- LCLS **must** be made to work or we may not see another DOE-funded FEL project in our working lifetimes
- Early commissioning/CD-4 (*i.e.* end of construction project) goals must be carefully thought out, especially in terms of diagnostic abilities

Assume nothing; trust no one (Berkner's First Law)