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Abstract

This note describes a magnetic measurement plan for the Delta undulator. The note starts
by discussing magnetic measurements during assembly of the undulator. The note then dis-
cusses measurements of the assembled undulator in detail, including measurments of the �eld
integrals, measurements for calculation of the trajectory, phase, and K value, and undulator
�ducialization. Details of the measurements are given so that the note can serve as a reference
while the measurements are being made.

1 Introduction1

SLAC is building a Delta undulator2 which will be placed in the LCLS beam line to produce light
with variable polarization. A 1 meter prototype is being constructed and a 3.2 meter full length
device will be built after the prototype is successfully tested. The period of the undulator is 32
mm.
The ultimate goal of the Delta program at SLAC is to produce an FEL quality undulator. This

means that the undulator meets LCLS type tolerances: trajectories are straight at the 2 �m level
at 13:5 GeV, �rst �eld integrals are below 40 �Tm and second integrals are below 50 �Tm2 at all
row phases, phase errors are below 10 degrees, K values are known to 10�4, and the undulator
is �ducialized with an accuracy of 20 �m. These requirements are summarized in table 1. The
measurements to achieve these tolerances are challenging. For LCLS, the undulator had side access
allowing the measurement probe position to be controlled by precision granite benches. The Delta
has no side access so previous techniques with a granite bench can not be used. The Delta has
a 6:6 mm bore through the magnets along its 3:2 m length. All access for the measurements of
the assembled undulator must be done in this space. Furthermore, a beam pipe must be in place
when the measurements are done due to design constraints. The bore of the beam pipe is 5:0 mm,
making the space available smaller. In this note we outline a plan to make the required magnetic
measurements in the bore of the undulator. The note discusses the measurements in detail and is
intended to be a reference during the measurements. It also suggests areas for future study and
development.

2 Basic Assumptions

The techniques outlined in this note for measuring and �ducializing the assembled undulator rely
on several basic assumptions. They are given below:

1Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the
LCLS project at SLAC.

2A. Temnykh, Physical Review Special Topics-Accelerators and Beams 11, 120702 (2008).
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Requirement Value Units
Trajectory Straightness < 2 �m
First Field Integrals < 40 �Tm
Second Field Integrals < 50 �Tm2

Phase Errors < 10 deg
K Value Accuracy 10�4

Fiducialization Accuracy < 20 �m

Table 1: LCLS undulator requirements. These serve as a goal for the Delta program.

1. The magnetic center does not change with the polarization mode of the undulator. In partic-
ular, the magnetic center can be found in the linear polarization modes and the center position
applies to the circular and elliptical modes.

2. The undulator is well constructed so the magnetic center follows a straight line down the center
of the magnet bore at the 100 �m level. Furthermore, the guide tube for the probes and the
probe construction keeps the measurement probes near the magnet bore center at the 100 �m
level. Combined, the measurement probes stay within about 200 �m of the magnetic center.

3. The harmonic content of the magnetic �eld within 200 �m of the magnetic center is small.
We can use the fundamental term in the �eld expansion to estimate the �eld behavior.

These assumptions basically allow us to apply small corrections to the measurements in order to
�nd the �elds on the beam axis. The second assumption keeps the level of the corrections at the
few parts in 104 level. The third assumption implies that if we make a small correction, the error
on the correction due to limited knowledge of the �elds is second order and can be neglected. For
instance, suppose the harmonic terms change the fundamental component of the �eld by 20%. If
we make a correction of 5�10�4 based on the fundamental term, the ideal correction is in the range
4� 10�4 to 6� 10�4, so we apply the right correction at the 1� 10�4 level. These assumptions will
play an important role in �ducializing the undulator and determining its K value.

3 Magnetic Measurements Prior To Undulator Assembly

Magnetic measurements must be done at several stages during construction of the undulator. Every
magnet block must have its magnetic moment measured in a Helmholtz coil. The blocks are sorted
based on the magnetic moment measurements3 . The purpose of the sorting is to minimize �eld
errors, which will minimize the amount of tuning which must be done on the undulator quadrants. In
addition, blocks are chosen and sorted for the undulator ends. These blocks must have modi�cations
done in order to adjust their strength to launch the beam into the undulator center section with no
slope and no o¤set, and similarly to exit with no slope and no o¤set4 . The adjusted end blocks are
sorted to minimize errors. The sorts produce a list indicating which block goes into each position
in the undulator. The blocks are placed into the undulator quadrants following the list.
After the undulator quadrants are assembled, they are measured mechanically to make sure the

magnets are placed at the right positions. Based on the mechanical coordinate measuring machine
measurements, the blocks are moved closer to the right position. This process is iterated until the
block positions are correct to 50 �m.
After the blocks are positioned, magnetic measurements of the quadrants can begin. The quad-

rants are individually measured both using a Hall probe to measure the magnetic �eld components,

3Z. Wolf, "Delta Undulator Magnet Block Sorting Algorithm", LCLS-TN-13-1, January, 2013.
4Z. Wolf, "Delta Undulator End Design", LCLS-TN-13-2, January, 2013.

2



and also using a moving wire to measure the �eld integrals. Based on these measurements, individ-
ual blocks are moved slightly to change the �elds in order to straighten the trajectory, adjust the
phase, etc. This process of tuning the quadrants is illustrated in �gure 1.

Figure 1: An assembled quadrant is measured by scanning a Hall probe along the quadrant. Verti-
cally magnetized blocks are moved in y to change By on axis, and are moved in x to change Bx on
axis. Pairs of blocks are moved to make beam o¤sets and/or adjust phase. Horizontally magnetized
blocks are moved to produce phase changes.

If the relative permeability of the blocks was 1, the undulator would be a linear device, and when
the four quadrants were assembled to build the undulator, the beam behavior would be the same as
the superposition of the behavior from each quadrant. In practice, the relative permeability of the
magnet blocks is about 1:05, so the assembled undulator will not be ideal even if each quadrant is
tuned to be ideal. The assembled undulator requires further magnetic measurements. This is the
subject of the rest of this note. Changes to the assembled undulator are di¢ cult since the quadrants
must be disassembled to make an adjustment, and then reassembled and re-measured to check the
e¤ect of the adjustment. But it is only after assembly that the magnet block interactions due to
permeability e¤ects from neighboring quadrants can be measured.

4 Field Integrals Of The Assembled Undulator

After assembly, the Delta undulator �eld integrals will be measured with a single stretched wire.
A single wire is used to minimize the volume of the �eld the measurement averages over. Two
measurement methods will be used, the moving wire method and the pulsed wire method. One
could consider using Hall probes, but they have too much o¤set drift to give accurate �eld integrals.
They will be used as a consistency check, however.
Both the moving wire and the pulsed wire use the same general setup and the same wire. The

wire must be non-magnetic so that there are no forces on it in the magnetic �eld of the undulator.
The wire must also have high tensile strength so that large tension can be applied to minimize sag.
The diameter should be small so that the sti¤ness of the wire does not a¤ect the measurements.
On the other hand, the diameter must be large enough so that the wire can be handled. In our
experience, 4 mil (100 �m) diameter copper beryllium wire is a good choice. Properties of the wire5

are listed in table 2.
For the Delta undulator, we assume a typical length of the wire of 5 m. This is a little more

than 1:5 times the undulator length, which is required for the pulsed wire measurements so that the
re�ected wave at the ends does not interfere with the signal. We take the wire tension to be 80%
of the 11:4 N maximum tension, or 9:1 N. Given the length of the wire, its electrical resistance will

5Little Falls Alloys, Paterson, New Jersey.
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Property Value Units
Mass density 8:35� 103 kg/m3

Resistivity 7:68� 10�8 
m
Tensile strength 1:4� 109 N/m2

Diameter 1:016� 10�4 m
Area 8:11� 10�9 m2

Mass per unit length 6:77� 10�5 kg/m
Resistance per unit length 9:47 
=m
Tension (max) 11:4 [2:57] N [lbs]

Table 2: Properties of the copper beryllium wire chosen for the measurements.

be 47:4 
. If we use a pulser with 487 V amplitude and 50 
 internal impedance, the current pulse
in the wire will have an amplitude of approximately 5:0 A. We summarize these parameters of the
measurement system in table 3.

Parameter Value Units
Wire length L 5 m
Wire tension T 9 N
Wire mass per unit length ml 6:77� 10�5 kg/m
Gravitational constant g 9:81 m/s2

Wire current amplitude I0 5 A

Table 3: Speci�c parameters of the measurement system.

The fundamental frequency of vibration of the undamped wire is given by

f1 =
1

2L

r
T

ml
(1)

Inserting values, we �nd
f1 = 36:5 Hz

The wire sag is given by
s =

g

32f21
(2)

Using the value for f1 and the gravitational constant, we �nd

s = 230 �m (3)

Note that the wire sag through the undulator is smaller than this value which is over a 5 m length.
A sag of 230 �m is not expected to a¤ect the �eld integrals, however.

4.1 Moving Wire

The moving wire gives both the �rst and second �eld integrals. The system is illustrated in �gure
2. We now discuss these �eld integral measurements.
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Figure 2: The moving wire technique gives both the �rst (upper) and second (lower) �eld integrals.

4.1.1 First Integral

If both ends of the wire are moved horizontally by �x so that the wire�s �nal position is parallel to
its initial position, the �ux change in the circuit containing the wire is

�� = �

Z
By dx dz (4)

= �x

Z L

0

By dz (5)

where the integral in z goes over the length of the wire, from the undulator entrance end at z = 0 to
the exit end at z = L. The voltage from the wire is integrated and from Faraday�s law, the integral
gives the �ux change

�� =

Z
V dt (6)

The limits on the time integral are not speci�ed, but they must extend past the time that the wire
is moving. These equations give the �eld integral in terms of the measured integrated voltage and
the measured distance the wire moved.Z L

0

By dz =
1

�x

Z
V dt (7)

Similarly, if the wire is moved vertically by �y and the voltage is integrated, one determines the
integral of Bx. Z L

0

Bx dz =
1

�y

Z
V dt (8)
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4.1.2 First Integral Signal Estimate

We wish to estimate the signal level for this measurement. Since we want to measure the �eld
uniformity, we must limit the distance we move the wire so that the �eld structure is not averaged
over. Suppose we move the wire 0:5 mm. We wish to measure �rst �eld integrals below our
tolerance of 40� 10�6 Tm, so we wish to be able to measure at least 10� 10�6 Tm. Inserting the
distance we move the wire and the minimum �eld integral we must measure, we �nd the integrated
voltage is Z

V dt = �x

Z L

0

By dz (9)

= 5:0� 10�9 Vs (10)

The voltage from the wire is sampled and each sample extends over a power line cycle which lasts
0:0167 s. We want at least 10 voltage samples to determine the integrated voltage, so the wire
must move at least 0:167 s. The voltage we measure is then the integrated voltage divided by
the integration time, which works out to be 30 nV. A very sensitive voltmeter with low o¤set
drift is required. An Agilent 3458 multimeter has 10 nV resolution6 which is just adequate. The
measurements will take place in a laboratory with temperature control to 0:1 �C. If the thermal emf
coe¢ cient is 10 �V/�C, thermal voltages will be on the order of 1 �V. This is very large compared
to the signal. We will move the wire back and forth, subtract the integrated voltages, and divide by
2 in order to take out the thermal emf. High thermal mass connections that keep the temperature
constant over a time period of several seconds must be used so that the thermal emf doesn�t change
during the two subtracted measurements.

4.1.3 Second Integral

The second integral of By if obtained by moving the wire�s entrance end at z = 0 horizontally by
�x while the exit end at z = L is held stationary. The �ux change is given by

�� =

Z L

0

By �x
L� z
L

dz (11)

=
�x

L

Z L

0

Z z

0

By (z
0) dz0 dz (12)

which can be con�rmed by integration by parts. The second integral is then given byZ L

0

Z z

0

By (z
0) dz0 dz =

L

�x

Z
V dt (13)

4.1.4 Second Integral Signal Estimate

The tolerance for the second �eld integral is 50� 10�6 Tm2. We wish to be able to measure better
than that, so we take our desired resolution to be 10� 10�6 Tm2. The integrated voltage using the
5 m wire with 0:5 mm moves at the entrance end is thenZ

V dt =
�x

L

Z L

0

Z z

0

By (z
0) dz0 dz (14)

= 1:0� 10�9 Vs (15)

The measurement is more di¢ cult than the measurement of the �rst integral. The integrated
voltage is 1=5 as large, so the voltage is 6 nV instead of 30 nV. At least 1 mm wire motion at the
entrance end will be required.

6"Agilent 3458A Multimeter Data Sheet", Agilent Corp., www.agilent.com.
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4.2 Pulsed Wire

The pulsed wire7 is used to con�rm the moving wire measurements. Typically, the pulsed wire
measurement is noisier than the moving wire measurement, but it provides a valuable independent
check. The pulsed wire system is illustrated in �gure 3. A current pulse is applied to the wire.
The magnetic �eld along the wire interacts with the current pulse to give the wire an initial velocity.
The transverse wire motion moves as a wave longitudinally along the wire and is detected by a
sensitive detector. A calibration magnet is used to put a known �eld integral into the measured
signal. The details of how this works are described below.

Figure 3: Illustration of the pulsed wire setup and the signal on the wire motion detector.

4.2.1 First Integral

To measure the �rst �eld integral, a current pulse of amplitude I0 and of duration �t is applied to
the wire. We make the pulse duration �t short so that the wire does not move signi�cantly during
the pulse The wire is assumed to be stationary before the pulse and at location x = 0 and y = 0.
The current pulse then gives the wire an impulse per unit length given by

pl (z) =

Z
fl (z; t) dt (16)

where fl is the force per unit length and pl is the momentum per unit length in the direction of the
force. The force per unit length in the x direction from a vertical �eld By and current I in the �z
direction is given by

fl (z; t) = I (t)By (z) (17)

7R. Warren, "Limitations on the Use of the Pulsed-Wire Field Measuring Technique", NIM A272 (1988) 257.
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and the integral of the force is given byZ
fl (z; t) dt =

Z
I (t)By (z) dt (18)

= I0�tBy (z) (19)

The momentum per unit length plx in the x direction is given by

plx (z) = mlvx (z) (20)

where ml is the mass per unit length of the wire and vx is the velocity of the wire in the x direction
after the current pulse. Equating the momentum change to the impulse, we �nd

mlvx (z) = I0�tBy (z) (21)

or
vx (z) =

1

ml
I0�tBy (z) (22)

This initial velocity causes a wave to propagate in both the +z and �z directions down the wire
with velocity c, where

c =

r
T

ml
(23)

where T is the wire tension. The displacement of the wire is the sum of the displacements from the
wave travelling toward +z and the wave travelling toward �z.

xtot (z; t) = x� (z + ct) + x+ (z � ct) (24)

The velocity of the wire is given by

vxtot (z; t) = vx� (z + ct) + vx+ (z � ct) (25)

By symmetry, half the initial transverse wire velocity goes into the wave moving toward +z, and
half into the wave moving toward �z.
Consider only the wave propagating in the negative z direction toward the detector at z = 0.

It�s amplitude is given by
x (z; t) = x (z + ct) (26)

The velocity of the wave is
vx (z; t) = x

0 (z + ct) c (27)

where the prime indicates a derivative with respect to the function�s argument. The wire velocity
at t = 0+ after the impulse has been calculated in equation 22. Including a factor of 1=2 to account
for half the initial wire motion going into the backward wave, we �nd

vx (z; 0) = x
0 (z) c =

1

2ml
I0�tBy (z) (28)

So
x0 (z) =

1

2cml
I0�tBy (z) (29)

Integrating, we �nd

x (�) =
1

2cml
I0�t

Z �

0

By (z
0) dz0 (30)
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or

x (z; t) =
1

2cml
I0�t

Z z+ct

0

By (z
0) dz0 (31)

The wire displacement at the detector at z = 0 is given by

x (0; t) =
1

2cml
I0�t

Z ct

0

By (z
0) dz0 (32)

By measuring the wire displacement as a function of time, we determine the �eld integralZ z

0

By (z
0) dz0 =

2cml

I0�t
x
�
0; t =

z

c

�
(33)

4.2.2 First Integral Signal Estimate

We can estimate the amplitude of the wire motion using the parameters of the wire and the tolerance
on the undulator �eld integral. We use the full tolerance value for the �eld integral since we are
only using the pulsed wire to check the moving wire measurements. The speed of a wave on the
wire is given by

c =

r
T

ml
(34)

Using T = 9 N and ml = 6:77� 10�5 kg/m, we �nd

c = 365 m/s (35)

We must choose the current pulse width so that the signal is measurable, but also so that the
response wave propagates only a small distance compared to the undulator period during the pulse.
We take �t = 20 � 10�6 s. Then c�t = 7:3 � 10�3 m, which is smaller than the 32 � 10�3 m
undulator period, but not signi�cantly smaller. Using I0 = 5 A, and

R L
0
By (z

0) dz0 = 40 � 10�6
Tm, we �nd

x

�
0; t =

L

c

�
=

I0�t

2cml

Z ct

0

By (z
0) dz0 (36)

= 0:08 �m (37)

This is a very small wire motion, so a sensitive detector must be used. A suitable detector was
developed and successfully used for the LCLS quadrupole �ducialization8 . Because the wire motion
is small, unwanted vibrations of the wire must be kept to a minimum.
A calibration magnet is included in the data set giving the wire displacement for a known

�eld integral. This allows the undulator �eld integral to be determined easily without having to
accurately know the wire parameters and wire motion detector sensitivity.

4.2.3 Second Integral

The second integral of the �eld is obtained by applying a current step function to the wire instead of
the short pulse used for the �rst integral. The step function can be thought of as a series of pulses.
Let P (t) be a pulse of amplitude 1 at time t of duration �t. Then

I(t) = I0P (0) + I0P (�t) + I0P (2�t) + I0P (3�t) + ::: (38)

=
1X
n=0

I0P (n�t) (39)

8Z. Wolf, "A Vibrating Wire System For Quadrupole Fiducialization", LCLS-TN-05-11, May, 2005.
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By superposition, the wire displacement at the detector is given by

� (0; t) =

t=�tX
n=0

x (0; t� n�t) (40)

Let � = n�t. Then

� (0; t) '
Z t

0

d�

�t
x (0; t� �) (41)

Substituting the pulse response and taking the limit of �t small, we get

� (0; t) =

Z t

0

d�

�t

1

2cml
I0�t

Z c(t��)

0

By (z
0) dz0 (42)

Let z = ct, and � = c� . Then

�
�
0; t =

z

c

�
=

Z z

0

d�

c

1

2cml
I0

Z z��

0

By (z
0) dz0 (43)

Let z00 = z � �. Then

�
�
0; t =

z

c

�
=

Z 0

z

�dz00
c

1

2cml
I0

Z z00

0

By (z
0) dz0 (44)

or

�
�
0; t =

z

c

�
=

I0
2c2ml

Z z

0

Z z00

0

By (z
0) dz0dz00 (45)

This expression lets us determine the second integral of the �eld by looking at the wire displacement
when a current step function is applied to the wire.Z z

0

Z z00

0

By (z
0) dz0dz00 =

2c2ml

I0
�
�
0; t =

z

c

�
(46)

4.2.4 Second Integral Signal Estimate

We can estimate the amplitude of the wire motion using the parameters given above when considering
the �rst integral. For a second integral equal to the tolerance limit of 50� 10�6 Tm2, we �nd

�

�
0; t =

L

c

�
=

I0
2c2ml

Z L

0

Z z00

0

By (z
0) dz0dz00 (47)

= 13:9 �m

This is a large signal, and in fact the current would have to be reduced with the present wire motion
detector in order to make this measurement.

5 Calculation Of Fields In The Undulator

For the remaining measurements of this note, we need to know the behavior of the �elds in the
undulator. In this section, we �rst �nd an analytic expression for the scalar potential of the
�elds. We then simplify the general expression by using only the dominant fundamental term in
the expansion. The dominant term is used to explicitly calculate the �elds in the linear and circular
polarization modes. Finally, a simulation of the undulator is used to estimate values for the free
parameters.
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5.1 Analytic Expression

For this calculation, we assume the origin of the coordinate system in x and y is at the magnetic
center of the �elds. The magnetic �eld in the bore of the undulator obeys the following equations.

r�B = 0 (48)

r �B = 0 (49)

Since the curl of B is zero, B can be expressed in terms of a scalar potential, B = r�. The scalar
potential obeys Laplace�s equation.

r2� = 0 (50)

To solve this equation, we use separation of variables.

� = X(x)Y (y)Z(z) (51)

Laplace�s equation becomes
X 00

X
+
Y 00

Y
+
Z 00

Z
= 0 (52)

Since the sum of terms each containing a di¤erent independent variable is zero, each term must be
a constant, and the sum of the constants must be zero.

X 00

X
= k2x (53)

Y 00

Y
= k2y (54)

Z 00

Z
= k2z (55)

k2x + k
2
y + k

2
z = 0 (56)

We only consider solutions periodic in z with multiples of the undulator period in the body of
the undulator. kz is imaginary.

Zn(z) = c5(n) cos (nkuz) + c6(n) sin (nkuz) (57)

where n in an integer, c5(n) and c6(n) are constants that depend on the row phase of the undulator,
and ku = 2�=�u where �u is the undulator period. The X and Y terms have no periodicity
requirements.

Xkx(x) = c1(kx) cosh (kxx) + c2(kx) sinh (kxx) (58)

Yky (y) = c3(ky) cosh (kyy) + c4(ky) sinh (kyy) (59)

The general form of the potential is

� =
1X
n=0

ZZ



dkxdkyf[c1(kx) cosh (kxx) + c2(kx) sinh (kxx)]

� [c3(ky) cosh (kyy) + c4(ky) sinh (kyy)] [c5(n) cos (nkuz) + c6(n) sin (nkuz)]g (60)

where the region of integration 
 is over all values of kx and ky, real and complex, that satisfy

k2x + k
2
y � n2k2u = 0 (61)

We will only consider this solution near x = 0 and y = 0. We approximate the �eld by using
only the dominant term in this region. It will contain the �rst harmonic with n = 1. So

Z(z) = c5 cos (kuz) + c6 sin (kuz) (62)
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The values of kx and ky are still free within the constraint. We leave kx and ky as parameters in
the expression for the potential. With these considerations, the scalar potential has the form

� = [c1 cosh (kxx) + c2 sinh (kxx)]

� [c3 cosh (kyy) + c4 sinh (kyy)]
� [c5 cos (kuz) + c6 sin (kuz)] (63)

where the ci are constants. The parameters kx, ky, and ku have the constraint

k2x + k
2
y = k

2
u (64)

We use this form of the potential to calculate the �elds. We do this explicitly for the two linear
and two circular polarization modes. For ease of notation, some of the same symbols are used when
analyzing each mode, but they take on di¤erent values for the di¤erent modes.

5.1.1 Linear Polarization Vertical Field

Consider the linear polarization vertical �eld mode. The magnet arrays are illustrated in the upper
part of �gure 4. At z = 0 the �eld is toward +y. There is forward-backward symmetry of the
potential in z. There is left-right symmetry in x. The scalar potential increases monotonically as
one moves up in y. The potential that satis�es these boundary conditions is

� = c1 cosh (kxx)� c4 sinh (kyy)� c5 cos (kuz) (65)

Letting �0 = c1c4c5, the �elds are

Bx = �0kx sinh (kxx) sinh (kyy) cos (kuz) (66)

By = �0ky cosh (kxx) cosh (kyy) cos (kuz) (67)

Bz = ��0ku cosh (kxx) sinh (kyy) sin (kuz) (68)

Note that in a planar undulator with wide poles, kx = 0 and ky = ku. We recover the conventional
form of the �elds.

5.1.2 Linear Polarization Horizontal Field

Now consider the linear polarization horizontal �eld mode of the undulator. This is shown in the
lower part of �gure 4. At z = 0 the �eld is toward +x. There is forward-backward symmetry of the
potential in z. There is top-bottom symmetry in y. The scalar potential increases monotonically
as one moves toward +x. The potential that satis�es these boundary conditions is

� = c2 sinh (kxx)� c3 cosh (kyy)� c5 cos (kuz) (69)

Letting �0 = c2c3c5, the �elds are

Bx = �0kx cosh (kxx) cosh (kyy) cos (kuz) (70)

By = �0ky sinh (kxx) sinh (kyy) cos (kuz) (71)

Bz = ��0ku sinh (kxx) cosh (kyy) sin (kuz) (72)

In a planar undulator with wide poles, ky = 0, kx = ku, and we recover the conventional form of the
�elds.
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Figure 4: Linear polarization vertical �eld mode (upper) and horizontal �eld mode (lower).

5.1.3 Circular Right Handed Polarization9

Consider the undulator in right handed circular polarization mode. The arrays are arranged as
shown in �gure 5. In order to calculate the �elds, we use superposition and divide the undulator
into a periodic part that starts at z = 0, and a periodic part that starts at z = �u=4. We further
use superposition to express the potential at z = 0 and at z = �u=4 as the sum of the potentials
from two equal strength planar undulators. This is illustrated in the lower part of �gure 5. At
z = 0, the planar undulators have �elds in the +y and +x directions, both of which we have already
seen. At z = �u=4, the planar undulators have �elds in the +y and �x directions. The scalar

9The techniques in this section were motivated by R. Schlueter and S. Prestemon, "Magnetic Systems: Insertion
Device Design", USPAS, Winter 2008.
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Figure 5: Con�guration of the undulator in right handed circular polarization mode.

potential, using the previous results, is then

� =
1

2
�0 [cosh (kxx) sinh (kyy) cos (kuz) + sinh (kxx) cosh (kyy) cos (kuz)]

+
1

2
�0[ cosh (kxx) sinh (kyy) cos (ku (z � �u=4))

� sinh (kxx) cosh (kyy) cos ku (z � �u=4) ] (73)

For circular polarization, we have �0 = �0. Since ku�u=4 = �=2, and cos(kuz � �=2) = sin(kuz),
we have

� =
1

2
�0 [cosh (kxx) sinh (kyy) + sinh (kxx) cosh (kyy)] cos (kuz)

+
1

2
�0 [cosh (kxx) sinh (kyy)� sinh (kxx) cosh (kyy)] sin (kuz) (74)

Using trigonometric identities, we have

� =
1

2
�0 sinh (kxx+ kyy) cos (kuz)�

1

2
�0 sinh (kxx� kyy) sin (kuz) (75)

By symmetry, kx = ky. Since k2x + k
2
y = k

2
u, kx = ky =

1p
2
ku.

� =
1

2
�0 sinh

�
1p
2
ku(x+ y)

�
cos (kuz)�

1

2
�0 sinh

�
1p
2
ku(x� y)

�
sin (kuz) (76)
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The �elds are

Bx =
1

2
p
2
�0ku cosh

�
1p
2
ku(x+ y)

�
cos (kuz)

� 1

2
p
2
�0ku cosh

�
1p
2
ku(x� y)

�
sin (kuz) (77)

By =
1

2
p
2
�0ku cosh

�
1p
2
ku(x+ y)

�
cos (kuz)

+
1

2
p
2
�0ku cosh

�
1p
2
ku(x� y)

�
sin (kuz) (78)

Bz = �1
2
�0ku sinh

�
1p
2
ku(x+ y)

�
sin (kuz)

�1
2
�0ku sinh

�
1p
2
ku(x� y)

�
cos (kuz) (79)

5.1.4 Circular Left Handed Polarization

For circular left handed polarization, the �elds at z = �u=4 are reversed compared to the case of
circular right handed polarization. The scalar potential is then

� =
1

2
�0 sinh

�
1p
2
ku(x+ y)

�
cos (kuz) +

1

2
�0 sinh

�
1p
2
ku(x� y)

�
sin (kuz) (80)

The �elds are

Bx =
1

2
p
2
�0ku cosh

�
1p
2
ku(x+ y)

�
cos (kuz)

+
1

2
p
2
�0ku cosh

�
1p
2
ku(x� y)

�
sin (kuz) (81)

By =
1

2
p
2
�0ku cosh

�
1p
2
ku(x+ y)

�
cos (kuz)

� 1

2
p
2
�0ku cosh

�
1p
2
ku(x� y)

�
sin (kuz) (82)

Bz = �1
2
�0ku sinh

�
1p
2
ku(x+ y)

�
sin (kuz)

+
1

2
�0ku sinh

�
1p
2
ku(x� y)

�
cos (kuz) (83)

5.2 Modeled Fields

In the planar polarization modes, the expressions for the �elds have free parameters kx and ky. The
�elds in the undulator were modeled10 . We use results from modeling the undulator to estimate
the values for these parameters.
The �eld variation in the x-direction when the undulator was in the vertical �eld mode is shown

in �gure 6, and the �eld variation in the y-direction is shown in �gure 7. The form of the By �eld
is

By = �0ky cosh (kxx) cosh (kyy) cos (kuz)

The x-variation of the modeled �eld was �t with a hyperbolic cosine giving kx = 0:222 1/mm. The

10This work was done by Alexander Temnykh of Cornell.
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Figure 6: Simulation of the Delta undulator in the vertical �eld mode showing how the �eld By
varies with x.

y-variation of the �eld was �t with a cosine function giving ky = i0:129 1/mm Note that ky is
imaginary and the �eld variation is locally concave down.
Since ku = 2�=�u, and the undulator period is �u = 32 mm, ku = 0:196 1/mm. We check the

constraint by comparing k2x + k
2
y to k

2
u.

k2x + k
2
y = 0:0326 1/mm2 (84)

k2u = 0:0384 1/mm2 (85)

The constraint is roughly satis�ed. The discrepancy may be due to the fact that the fundamental
term in the expansion may not su¢ ciently describe the �eld over the large range of the �ts. We will
determine kx and ky from the measurements, but the model gives a good idea of what to expect.
When the undulator is in planar horizontal �eld mode, we found that the form of the Bx �eld is

Bx = �0kx cosh (kxx) cosh (kyy) cos (kuz)

By symmetry, in this mode the modeled parameters are kx = i0:129 1/mm and ky = 0:222 1/mm.

6 Measurement Of The Fields In The Undulator

The undulator characteristics such as trajectories, phase, and K value will be calculated from Hall
probe measurements of the magnetic �eld. Since the �elds vary with position, the measurement
depends on where the probe is and also on where the unknown magnetic center is. There is no way
to position the probe so the measurements take place at a magnetic center or at a beam axis location.
The probe position must be determined both transversely and longitudinally in the undulator bore.
The position of the magnetic center relative to the probes must be combined with the probe position
in order to give the magnetic center position. To fully characterize the �elds, we must also measure
kx, ky, and the �eld amplitude at the magnetic center. In this section we discuss how we plan to
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Figure 7: Simulation of the Delta undulator in the vertical �eld mode showing how the �eld By
varies with y.

measure the magnetic �eld, determine the �eld parameters from the measurements, determine the
beam axis from the measurements, relate the beam axis to �ducials on the undulator, and determine
the undulator parameters such as trajectories and phase on the beam axis.
It turns out that we only have room in the undulator bore for two Hall probes. We o¤set the

probes in one direction, thus we sample the �eld at two points in the o¤set direction11 . The probe
can be rotated, however, to rotate the o¤set direction. We must use this limited set of measurements
to determine the undulator parameters.

6.1 Hall Probes

Both Bx and By must be determined in the presence of all three �eld components. Hall probes
typically have crosstalk between the components. To minimize crosstalk, we are using probes from
the company Senis which have small planar Hall e¤ect12 . Senis did not have "o¤ the shelf" probes
that would �t in the beam pipe, so they built custom probes for us with small packages for the Hall
elements and miniature cables to get the signals out. Because these are the �rst such miniature
probes Senis built, our options for the number and the positions of the Hall elements were limited.
We chose to use probes with three elements measuring Bx, By, and Bz all along the same line, but
o¤set in z. This is illustrated in �gure 8. Corrections for the z-positions of the probes will be
made in the analysis software. We could only �t two such probes in the beam pipe. We arranged
them o¤set by 200 �m as shown in �gure 9. We made the o¤set in the y direction. One probe is on
the axis of the cylindrical assembly, and the other probe is 200 �m above the axis. The cables from
the �rst probe must pass the other, and Senis engineered the pair to avoid potential interference.

11A similar arrangement was used by I. Vasserman, et al., "Comparison of Arepoc and Sentron Hall Sensors
using Undulator A at the APS Magnetic Measurement Facility", presented by Y. Levashov at IMMW-17, Barcelona,
September, 2011.
12D. Popovic, et al., "Three-Axis Teslameter With Integrated Hall Probe", IEEE Trans. Instr. Meas. 56, August,

2007, p. 1396.
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Figure 8: Three Hall probe elements measure the three �eld components along the line of motion of
the probe.

Figure 9: Two Hall probe packages are mounted o¤set in the y-direction in the assembly.

This orientation of the probes lets us determine the �elds in the undulator at two points vertically
o¤set. Rotating the probes by 90 degrees lets us determine the �elds at two points horizontally
o¤set.

6.2 Position Of The Magnetic Center Relative To The Probes

In the linear polarization modes, the x and y behavior of the �elds are easily separated. This will
let us use our two probes to measure at two points in either the x direction or the y direction and
from these measurements determine the �eld variation parameter in that direction. We measure
both Bx and By, in both the x direction and the y direction, giving four ways to get a determination
of a relative magnetic center coordinate.
Suppose the undulator is in the vertical �eld mode. The general �eld behavior is illustrated in

�gure 10. Near the magnetic center, the x-dependence of Bx goes as a hyperbolic sine, and of By
goes as a hyperbolic cosine. Since ky is imaginary, near the magnetic center the y-dependence of
Bx goes as sine, and the y-dependence of By goes as cosine. Only the rough shape of the �elds is
shown in the �gure.
The �elds were calculated above with the magnetic center at x = 0, y = 0. When the magnetic

center is shifted to (xc; yc), the equations become

Bx = �0kx sinh [kx (x� xc(z))] sinh [ky (y � yc(z))] cos (kuz) (86)

By = �0ky cosh [kx (x� xc(z))] cosh [ky (y � yc(z))] cos (kuz) (87)

Bz = ��0ku cosh [kx (x� xc(z))] sinh [ky (y � yc(z))] sin (kuz) (88)

The simulation gives kx = 0:222 1/mm and ky = i0:129 1/mm. In what follows, we leave the
hyperbolic sine or cosine form of the �eld variation in the y direction with complex ky. This is
equivalent to using a sine or cosine function with real ky. Note that the magnitude of kx is larger
than the magnitude of ky, which means the �eld varies more rapidly in x than in y.

6.2.1 (x1 � xc) from Bx, Linear Polarization Vertical Field Mode

First consider Bx. Its x-dependence has the form

Bx = B0(y; z) sinh[kx(x� xc(z))] (89)
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Figure 10: In linear polarization vertical �eld mode the �eld behaves in general as shown in these
plots. Since ky is imaginary, the curvature of the By vs y plot is concave down at the magnetic
center.

If we turn the probe package 90� so that the two probes are shifted in x by �x = �y, probe 1
measures

Bx1 = B0 sinh[kx(x1 � xc(z))] (90)

and probe 2 measures
Bx2 = B0 sinh[kx(x1 +�x� xc(z))] (91)

We measure very close to the magnetic center so that jkx(x� xc(z))j << 1. In this case, we use
the linear term in the expansion of the �eld.

Bx1 ' B0kx(x1 � xc(z)) (92)

Bx2 ' B0kx(x1 +�x� xc(z)) (93)

Solving for x1 � xc(z), we �nd

(x1 � xc(z)) =
Bx1

Bx2 �Bx1
�x (94)

All quantities on the right side are known. This gives the x-position of the magnetic center if we
know the position of probe 1. Furthermore, it does not depend on the value of kx. The method is
illustrated in �gure 11. One potential problem occurs if the probes are at y = yc, in which case the
measured �elds go to zero. Another determination of x1 � xc would then be made.

6.2.2 (y1 � yc) from Bx, Linear Polarization Vertical Field Mode

Now suppose we turn the probe package to its normal con�guration where the probes are shifted by
�y. Then Bx has y-dependence of the form

Bx = B0(x; z) sinh[ky(y � yc(z))] (95)
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Figure 11: Two measurements of Bx allow the x-position of the magnetic center to be found.

Again we measure close to the magnetic center so jky(y � yc(z))j << 1. We use a linear expansion
of the �eld to determine the two measured Bx �elds from probes 1 and 2.

Bx1 ' B0ky(y1 � yc(z)) (96)

Bx2 ' B0ky(y1 +�y � yc(z)) (97)

Solving for y1 � yc(z), we �nd
(y1 � yc(z)) =

Bx1
Bx2 �Bx1

�y (98)

This gives a determination of the magnetic center y-position which does not depend on the value of
ky. This measurement works well as long as x 6= xc, in which case the measured �elds are zero and
another method must be used.

6.2.3 (x1 � xc) from By, Linear Polarization Vertical Field Mode

Now consider By. Its x-dependence has the form

By = B0(y; z) cosh[kx(x� xc(z))] (99)

If we turn the probe package 90� so that the two probes are shifted in x by �x = �y, probe 1
measures

By1 = B0 cosh[kx(x1 � xc(z))] (100)

and probe 2 measures
By2 = B0 cosh[kx(x1 +�x� xc(z))] (101)

We measure very close to the magnetic center so that jkx(x� xc(z))j << 1. In this case, we use
the quadratic expansion of the �eld.

By1 ' B0

�
1 +

1

2
k2x(x1 � xc)2

�
(102)

By2 ' B0

�
1 +

1

2
k2x
�
(x1 � xc)2 + 2(x1 � xc)�x+�x2

��
(103)

Solving for x1 � xc(z), we �nd

(x1 � xc(z)) =
By2 �By1
By1

1

k2x�x
� 1
2
�x (104)
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All quantities on the right side except kx are known. To �nd the magnetic center relative to probe
1, we can use the value of kx from the model. We would use this calculation if the method presented
in the previous section does not work because y = yc and B0 = 0. Alternatively, we can use the
magnetic center position determined above using Bx and this expression to determine kx. This will
be done below. The method is illustrated in �gure 12.

Figure 12: Two probes allow determination of the position of the magnetic center relative to the
probes.

6.2.4 (y1 � yc) from By, Linear Polarization Vertical Field Mode

Finally, suppose we orient the probes back to their vertical con�guration and measure By at two
points. By�s y-dependence has the form

By = B0(x; z) cosh[ky(y � yc(z))] (105)

Expanding the �eld to second order and �nding its values at the positions of probe 1 and probe 2,
we have

By1 ' B0

�
1 +

1

2
k2y(y1 � yc)2

�
(106)

By2 ' B0

�
1 +

1

2
k2y
�
(y1 � yc)2 + 2(y1 � yc)�y +�y2

��
(107)

Solving for y1 � yc(z), we �nd

(y1 � yc(z)) =
By2 �By1
By1

1

k2y�y
� 1
2
�y (108)

This expression gives the y-position of the magnetic center relative to probe 1 provided we know ky.
Alternatively, we can �nd ky if we know the relative magnetic center position.

6.2.5 Linear polarization horizontal �eld

The above procedure can be repeated with the undulator in linear polarization horizontal �eld mode.
The equations giving the magnetic center position relative to probe 1 are identical to those given
above except with x and y interchanged.
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In total, we have four determinations of (x1 � xc(z)) and four determinations of (y1 � yc(z)).
Two determinations of each involve a k parameter. The consistency of these measurements will be
studied. We will also use these equations to determine the k parameters.
We determine the position of probe 1, (x1;y1), below. This allows us to determine the position

of the magnetic center since we know its position relative to probe 1.

6.3 Determine kx and ky
When using the undulator mode with linear polarization vertical �eld, we had two expressions for
(x1 � xc(z)), one of which involved kx. Using Bx, we found

(x1 � xc(z)) =
�

Bx1
Bx2 �Bx1

�
x

�x (109)

where we explicitly say, using the subscript on the bracket, that the Bx measurements were made
with the probes in the x-direction. Using By, we found

(x1 � xc(z)) =
�
By2 �By1
By1

�
x

1

k2x�x
� 1
2
�x (110)

where we explicitly say that the By measurements were made with the probes in the x-direction. We
point out that both Bx and By are measured in the same scan of the undulator so indeed (x1�xc(z))
is the same in both expressions. When we equate these expressions for the relative magnetic center
position, we can calculate the value of kx. We �nd

k2x =
1

�x2

h
By2�By1

By1

i
xh

Bx1

Bx2�Bx1

i
x
+ 1

2

(111)

In a similar way, we had two expressions for (y1 � yc(z)). Using Bx, we found

(y1 � yc(z)) =
�

Bx1
Bx2 �Bx1

�
y

�y (112)

where we explicitly say, using the subscript on the bracket, that the Bx measurements were made
with the probes in the y-direction. Using By, we found

(y1 � yc(z)) =
�
By2 �By1
By1

�
y

1

k2y�y
� 1
2
�y (113)

where we explicitly say that the By measurements were made with the probes in the y-direction.
Both Bx and By are measured in the same scan of the undulator so (y1� yc(z)) is the same in both
expressions. When we equate these expressions for the relative magnetic center position, we can
calculate the value of ky. We �nd

k2y =
1

�y2

h
By2�By1

By1

i
yh

Bx1

Bx2�Bx1

i
y
+ 1

2

(114)

The same procedure will be followed using the horizontal �eld mode of the undulator. This will
provide a check of the kx and ky values.
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6.4 Probe Position Relative To A Straight Line

We know the position of the magnetic center relative to the position of probe 1. We now proceed
to determine the position of probe 1. The probe will be located magnetically at two points outside
the undulator, and the straight line between these two points will establish an axis for a coordinate
system. Inside the undulator, we must determine how the probe motion deviates from a straight
line. The line does not necessarily have to be the coordinate axis. Relating the probe position to
di¤erent lines is easily done with a linear transformation.
We now �nd the probe position relative to a straight line through the undulator. For a straight

line, we use a laser beam13 . The technique is illustrated in �gure 13. A corner cube is mounted at

Figure 13: A corner cube re�ects an incident laser beam back to a camera. The position of the
beam at the camera depends on the transverse position of the corner cube as shown.

the end of the Hall probe package. A laser beam directed toward the probe package is re�ected by
the corner cube. The position of the re�ected beam is measured on a camera. The re�ected beam
position depends on the transverse position of the corner cube. This technique gives changes in
both the x and y positions of the Hall probe package relative to the straight line of the laser beam.
Suppose we place the laser at the entrance end of the undulator. At some position before the

undulator, we de�ne the position to be z = 0. At z = 0, we de�ne the distance from the probe
package to the laser beam to be u = 0 in the x-direction and v = 0 in the y-direction. This is
illustrated for the x-direction in �gure 14. As the probe assembly is moved through the undulator,

Figure 14: The position of the probe assembly is determined relative to the straight line of a laser
beam.

the retrore�ector system gives the changes in the x and y probe positions. We denote these as
(u(z); v(z)). At a point outside the undulator, at z = zend, the change in the probe assembly
position relative to the laser beam and relative to the z = 0 point is (uend; vend).
13This work was done by Georg Gassner of SLAC.
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In order to make this more concrete, suppose the laser system gives the coordinates of the
re�ected beam on a readout as U and V . At z = 0, we measure U0 and V0. Then

u(0) = U(0)� U0 = 0 (115)

u(z) = U(z)� U0 (116)

uend = U(zend)� U0 (117)

v(0) = V (0)� V0 = 0 (118)

v(z) = V (z)� V0 (119)

vend = V (zend)� V0 (120)

Note that (u(z); v(z)) should be the same whether the probe package is rotated or not.

6.5 Probe Position In A Fiducialized Coordinate System

The (u(z); v(z)) measurements tell us how the probes move through the undulator relative to a
straight line. The next step is to determine where the probes are relative to an object that can be
�ducialized so we can determine where the probes are in space. We do this magnetically at each
end of the undulator. The probe positions at the two ends of the undulator give two points on a
straight line. This is a natural axis for a coordinate system since only straightness corrections must
be made. Further transformations to the mechanical center line of the undulator or to tooling balls
on the undulator can be done at a later time.
The technique for locating the y-position of Hall probe 1 at each end of the undulator is illustrated

in �gure 15. Fiducialization magnets are placed at each end of the undulator at the z = 0 and the

Figure 15: Fiducialization magnets are used to locate the Hall probes at each end of the undulator.

z = zend locations. Fiducialization magnets are magnetized cones with the same magnetic polarity
mounted in a �xture with tooling balls on the outside of the �xture. The �xture allows the assembly
to be �ipped in a kinematic mount so the zero �eld point can be located relative to the tooling balls.
The �ducialization magnets are described more fully in an LCLS technical note14 . In particular,
the note describes the calibration procedure which allows the position of the magnetic center of the
�ducialization magnet to be determined relative to the tooling balls.
At z = 0, we move the �ducialization magnet until Hall probe 1 is at the magnetic center. From

the calibration, the position of Hall probe 1 relative to the tooling balls on the �ducialization magnet
is then known at the entrance end. At z = zend, we move that �ducialization magnet until Hall
probe 1 is at the magnetic center, and then the position of Hall probe 1 is known relative to the
tooling balls on the �ducialization magnet at the exit end.

14Y. Levashov and Z. Wolf, "Test of Magnetic Transfer From Magnetic to Mechanical Reference for LCLS Undulator
Fiducialization", LCLS-TN-05-10, April, 2005.
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We de�ne a line between the probe 1 positions at each end of the undulator as our measurement
coordinate axis. Let (x1(z); y1(z)) be the position of Hall probe 1 relative to this line. At z = 0
and at z = zend, (x1; y1) = (0; 0). We now transfer our knowledge of the probe position relative to
the laser line to the probe position relative to this new line. The linear transformation is

x1(z) = u(z)� uend
z

zend
(121)

y1(z) = v(z)� vend
z

zend
(122)

This tells us the position of Hall probe 1 at any point in the undulator relative to a line which can
be located by tooling balls. We will use the position of the line between the two probe positions,
which is the same as the line between the magnetic center�s of the �ducialization magnets, as the
x = 0, y = 0 line of our measurement coordinate system. This coordinate system, and the ideal
beam axis in this coordinate system, will be related to tooling balls on the undulator.
When the probe assembly is rotated, the position of probe 1 changes due to errors in constructing

the probe assembly. This is illustrated in �gure 16. The (u; v) coordinates should remain the same

Figure 16: Probe 1 and probe 2 positions when the assembly is oriented vertically and horizontally.
The axes indicate the center of rotation.

when a measurement is done with the rotated probe, but the �ducialization magnets will locate
probe 1 at positions shifted by �x and �y as shown in the �gure. We will use the positions of probe
1 in the vertical orientation at each end of the undulator to de�ne the coordinate system. When
we use the probe with horizontal orientation, we will apply the (�x; �y) correction to the position of
probe 1.

6.6 Determine The Beam Axis

We now determine the position of the magnetic center through the undulator relative to our coor-
dinate system. We know the position of the magnetic center relative to probe 1 from equation 94
giving (x1� xc) and equation 98 giving (y1� yc). This gives us the position of the magnetic center
as

xc = x1 � (x1 � xc) (123)

yc = y1 � (y1 � yc) (124)
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Inserting the position of probe 1 from equation 121, we �nd

xc(z) = u(z)� uend
z

zend
� (x1(z)� xc(z)) (125)

yc(z) = v(z)� vend
z

zend
� (y1(z)� yc(z)) (126)

This is illustrated in the y-direction in �gure 17.

Figure 17: The position of the magnetic center is determined in the �ducialized coordinate system.

We now know the position of the center of the magnetic �eld at all points along the undulator
in a coordinate system de�ned by tooling balls. We �t the magnetic center position curve with a
straight line to determine the beam axis. This is illustrated in the y-direction in �gure 18. The ends

Figure 18: The magnetic center position is �t by a line to determine the beam axis.

of the beam axis line are denoted as
�
xb_us; yb_us

�
at the upstream end at z = 0, and

�
xb_ds; yb_ds

�
at the downstream end at z = zend. These two points determine the beam axis in our coordinate
system.

6.7 Fiducialization Of The Beam Axis

We now wish to determine the beam axis relative to tooling balls on the undulator. The undulator
will have tooling balls on its top directly above the beam axis and on the side directly across from
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the beam axis. These are used to align the undulator. We locate the beam axis relative to these
tooling balls. The procedure is outlined for the y-direction in �gure 19. At the upstream end of

Figure 19: The beam axis is �ducialized by adding the distance from the undulator tooling balls
to the �ducialization magnet tooling balls, the calibration of the �ducialization magnets, and the
position of the beam axis relative to the center of the �ducialization magnets.

the undulator, the vertical distance of the beam axis below the undulator tooling ball is Yus given
by

Yus = Tus + Cus � yb_us (127)

In this equation, Tus is the distance from the undulator tooling ball to the tooling ball on the
�ducialization magnet. Cus is the distance of the center of the �ducialization magnet from the
upper tooling ball on it. This is determined in a calibration. yb_us is the y-position of the beam
axis at the �ducialization magnet. The yb_us term is subtracted since the other terms refer to a
distance measured down from the tooling balls, and the yb_us term refers to the y-position measured
positive up. A similar relation exists for the x-direction.
Similarly, at the downstream end, the distance of the beam axis down from the undulator tooling

ball is
Yds = Tds + Cds � yb_ds (128)

with a similar relation for Xds. The upstream and downstream locations of the beam axis relative
to tooling balls on the undulator completes the �ducialization of the beam axis.

6.8 Trajectories, Phase, K Value

Using the procedure detailed in the previous sections, we have determined the beam axis, and we
know where our probe is relative to the beam axis. We now take the �eld components measured by
probe 1, which is nominally on the axis of the probe package, and from them calculate the �elds on
the beam axis. Once we determine the �elds on the beam axis, we can calculate the trajectories,
phase, and K value.
The two probes in the assembly do not provide enough information for a �t to determine the

�elds on the beam axis. A larger assembly of probes, at least three in the x-direction and three in
the y-direction, would be needed to do a second order �t to the measurements in order to use the
�t to determine the �elds on the beam axis. This is an area for future development.
Using the probes available, we determine the �elds on the beam axis as follows. We know the

measured �elds at the known position of probe 1, and we know the position of the beam axis. We
use the analytic expression for the �eld behavior as a function of position in order to calculate the
�elds on the beam axis given the measurements. We assume that probe 1 is within 200 �m of
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the beam axis accounting for tolerances in assembling the undulator and the probe package, and
accounting for required clearances between the components. Since this distance is small, we will
make small corrections to the probe 1 measurements to give the �elds on the beam axis. We can
use the functional form of the fundamental term in the �eld expansion to make the corrections since
the errors from the higher �eld harmonics will make second order corrections. We know the values
of the k parameters. The unknown is the �eld value at the magnetic center, an overall scale factor.
We calculate it from the measurement.
In all cases above, the �elds had the form

Bi = Bi0fi(x; y; z) (129)

where i = x; y, or z, and f is a function which depends on the polarization mode and whose form
was given explicitly for the linear and circular polarization modes. The �eld component measured
by probe 1 is

Bi1 = Bi0fi(x1 � xc; y1 � yc; z) (130)

where (xc; yc) are the coordinates of the magnetic center, (x1; y1) are the coordinates of probe 1,
and i = x, y, or z. The �eld amplitude at the magnetic center is then

Bi0 =
Bi1

fi(x1 � xc; y1 � yc; z)
(131)

We want the �eld on the beam axis. This is given by

Bib = Bi0fi(xb � xc; yb � yc; z) (132)

where (xb; yb) are the coordinates of the beam axis. The �elds on the beam axis are then given by

Bib =
Bi1

fi(x1 � xc; y1 � yc; z)
fi(xb � xc; yb � yc; z) (133)

All quantities on the right hand side are known including kx and ky, and xc and yc in all polarization
modes.
This technique uses the measured �eld and the functional form of the �eld dependence with

position to determine the �eld on the beam axis. It assumes that the fundamental term in the �eld
expansion is dominant, that the �eld measurement is near the magnetic center and near the beam
axis so corrections are small, and that higher harmonics in the �eld contribute second order terms
to the small correction of the measured �eld.
One can consider using the second probe to re�ne this technique, or as a check. One can also

consider making a larger probe array, �tting the measurements, and then interpolating to determine
the �elds on the beam axis. The errors associated with using a single measurement and the functional
form of the �eld must be studied. These are areas for future development.

7 Conclusion

A measurement plan for the Delta undulator was presented. The �eld integrals are measured using
two techniques which use a single wire. The techniques involved �rst moving the wire and second
sending a current pulse down the wire. A plan was then presented to make point measurements of
the �elds in the undulator. Two Hall probes were used in an assembly. The two measurements
allowed a determination of the magnetic center position relative to the probes when the undulator
was in vertical planar �eld mode and horizontal planar �eld mode. The constants determining the
�eld dependence on x and y, kx and ky, are determined by these measurements. The position of
the probes was determined using a laser system and �ducialization magnets. The combination of

28



knowing the probe position and the magnetic center position relative to the probe gives the magnetic
center position. Knowing the magnetic center as a function of z, a linear �t was used to determine
the beam axis. Once the beam axis was known, the �elds on the beam axis were determined by
correcting the measured �eld using the functional form of the �eld dependence with position and
the known positions of the measurement, the magnetic center, and the beam axis. Knowing the
�elds on the beam axis allows one to calculate the trajectories, phase, and K value.
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