Imaging Update to LCLS SAC, June 2006 Henry Chapman, LLNL

LLNL: Sasa Bajt, Anton Barty, Henry Benner, Micheal Bogan, Henry Chapman, Matthias Frank, Stefan Hau-Riege, Richard Lee, Richard London, Stefano Marchesini, Tom McCarville, Alex Noy, Urs Rohner, Eberhard Spiller, Abraham Szöke, Bruce Woods

- Uppsala: Janos Hajdu, Gösta Huldt, Carl Caleman, Magnus Bergh, Nicusor Timeneau, David van der Spoel, Florian Burmeister, Marvin Seibert
- UC Davis: David Shapiro
- SLAC: Keith Hodgson, Sebastien Boutet
- DESY: Thomas Tschentscher, Elke Plönjes, Marion Kulhman, Rolf Treusch, Stefan Dusterer, Jochen Schneider
- TU Berlin: Thomas Möller, Christof Bostedt
- LBNL: Malcolm Howells, Congwu Cui
- ASU: John Spence, Uwe Weierstall, Bruce Doak

PULSE **STANFORD**

Single particle diffraction offers many challenges

The diffraction imaging interaction chamber and detector arrangement

The FLASH experiments are essentially a dry-run for LCLS

- Diffraction imaging with a single pulse, to surpass radiation damage limits
- Determine if there is any change in structure of particles during the pulse
- Measure the dynamics of the FEL-particle interaction to validate models
- Develop and demonstrate particle injection and alignment techniques
- Develop optics and instrumentation

We have carried out experiments at the first soft-X-ray FEL in the world

The VUV-FEL at HASYLAB, DESY

- User facility, FEL radiation to 6 nm wavelength
- Initial FEL Operation August 2005 at 32 nm and <30 fs pulses, 10¹³ photons
- Now lasing at 13 nm

Our diffraction camera can measure forward scattering close to the direct soft-X-ray FEL beam

the 30° to 60° gradient

The VUV-FEL diffraction experiment is designed to measure forward scattering with high SNR

Shadow mask

Sasa Bajt, Eberhard Spiller, and Jennifer Alameda

Image reconstructed from an ultrafast FEL diffraction pattern

The reconstruction is carried out to the diffraction limit of the 0.26 NA detector

The sample is quite damaged by the FEL pulses

Pulse energy: 10 μ J or 1 J/cm² Dose in Si₃N₄: 10⁵ J/g or 22 eV/atom Temperature of 6×10⁴ K, or 5.2 eV, ionization/atom of 2.5 Surfaces will expand at sound speed: 1.3×10⁶ cm/s In 25 fs, material will not move more than 3 Å

We will perform 3D imaging of identical objects at FLASH and high-resolution imaging of cells

XFEL diffraction of molecules is modified (damaged) by photoionization and motion of atoms

Stefan Hau-Riege, Richard London, Abraham Szoke

By repairing ionization damage, the imaging is limited by the inertia of the atoms

Even longer pulses can be tolerated if a tamper is used, but image classification will be more difficult

(Hau-Riege et al., PRE 2005)

Particle explosion experiments were performed on latex particles on membranes

•The particle size is determined by Mie scattering of the VUV-FEL pulse by the particles (FEL pulse is both pump and probe)

•To see a 5% change in radius during pulse, require size distribution of ~1%.

Scattering from balls demonstrates that they retain their shape throughout the duration of the pulse

Our VUV hydrodynamic code shows that latex spheres start exploding in ~ 2 ps

Density

The substrate is a high-resolution detector (at low enough fluence)

We invented a new method called femtosecond timedelay holography

First demonstration of time-delay holography with 30 fs time resolution indicates the particle explosion

First EUV-FEL experiments show that structural information can be obtained before destruction

The multilayer structure can test our hydrodynamic models

At 32 nm, the high field regime starts at around 10^{17} W/cm², At 6 nm, the high field regime starts at around 2.5 x 10^{18} W/cm².

We expect to approach 10¹⁹ W/cm² with submicron focusing this year.

This will be needed. It also gives access to a new field of science:

- Studies on non-linearity and multiphoton processes (multiple inner shell ionisations, two-electron ejections)
- Access to hot dense matter regime and to high pressure states
- Magnetic field effects could appear at 10¹⁸ W/cm² at 32 nm
- Relativistic effects above 10¹⁹ W/cm² at 32 nm

Sub-micron focusing optics could provide ~10¹⁹ W/cm²

Optic is not sensitive to x, y displacement (since beam is nearly parallel and optic is a parabola. Optic is sensitive to tilts as shown below. Need better than microradian alignment (use wavefront sensor, but need fine adjustments)

Optic must have <0.5 waves abberration (at 32 nm). That is 16 nm RMS, or 8 nm RMS in surface figure error. i.e. $\lambda/80$ (or $\lambda/100$ better) surface error at HeNe

SAMPLE INTRODUCTION AND MANIPULATION

The Basic Concept:

- 1. Take molecules of interest from sample solution
- 2. Introduce them into the beam

- 3. Hit them with the XFEL pulse and record diffraction pattern
- 4. Repeat to get sufficient number of patterns for averaging & image reconstruction.

Challenges:

- 1. Particle concentration
- 2. Keeping molecules in "native" conformation
- 3. Diagnostics: How do we know if a pattern is good?

Introducing Large Molecules into the Beam Using Electrospray Ionization (ESI)

- ESI is widely used to bring macromolecules or viruses into the gas phase, e.g., for mass spectrometry
- ESI can create large number of droplets and molecular ions (~10¹⁰/sec at 1 μl/min)
- ESI droplet size adjustable from nm to μm (compared to ~1-50 μm for ink jet droplet generator)
- Both ESI and ink jet can be pulsed as desired
- Droplets / ions can be sucked into vacuum of mass spectrometer or beam line differential pumping and skimmers

Particle injection system developed at LLNL

(Henry Benner, Matthias Frank, Mike Bogan)

First tests with a pulsed visible laser beam

Aerodynamic lens for precision injection of particles into the FEL beam

- Aerodynamic lens: stack of concentric orifices with decreasing openings.
- Can be used to introduce particles from atmosphere pressure into vacuum
- Near 100% transmission
- Creates a tightly focused particle beam. Final focus can be as small as ~10 μm diameter

The lens can be aimed just like a gun

1 μ m polystyrene balls sprayed from a distance of 25 cm for 10 minutes.

Diameter of particle spot deposited on the target: \sim 500 μ m

We will test such an injector at FLASH later this year

Laser alignment will help establish molecular imaging at XFELs and synchrotrons

Larsen, J. Chem Phys 111, 7774 (1999).

We are testing aligned-particle X-ray diffraction at the ALS

A Ceramic Soller collimator can filter out parastic scattering

Can be manufactured to conical shapes with tapered channels (diameters down to \sim 10 micrometer)

Laue multilayer pulse compressor

SINGLE PARTICLES, CLUSTER AND BIOMOLECULES: SCHEMATIC LAY OUT OF THE INSTRUMENT

SAMPLE HANDLING

(to locate/characterise hits)

Follow on from the FLASH experiments

- Diffraction imaging of a cell with a single pulse, to surpass radiation damage limits
- Measure the extent of the Coulomb explosion during the pulse
- Measure the dynamics of the FEL-particle interaction to validate models (pumpprobe measurements)
- Diffraction of injected and aligned particles
 - TMV
 - Photosystem 1 nanocrystals and particles
 - Unknown structures
- Single particle diffraction as optics commissioned and injection improved
 - start with Symmetric objects