Pump-Probe Surface Chemistry at LCLS

Anders Nilsson

Stanford Synchrotron Radiation Laboratory

- •Alan Luntz, Palo Alto, previous IBM
- •Alec Wodtke, University of California, Santa Barbara
- Tony Heinz, Columbia University
- Hvrjo Petek, University of Pittsburg
- Dave Nelson, Livermore National Laboratory
- Hendrik Bluhm, Lawrence Berkeley National Laboratory
- Howard Padmore, ALS, Berkeley
- Martin Wolf, Frei Universität, Berlin, Germany
- Wilfred Wurth, DESY, Germany
- Andrew Hogdson, University of Liverpool, UK
- Geoff Thornton, Manchester University, UK
- Tony Hansson, Stockholm University, Sweden

Surface Chemistry

- 80% of all important chemical reactions takes place on interfaces
- Catalytic processes is the largest chemical industry
- Energy technology, fuel cells, splitting of water by solar
- Environmental science
- Semiconductor technology
- Biosurfaces

$N_2 + 3H_2 \Rightarrow 2NH_3$ Haber-Bosch Process

• The most important invention in the 20th century

- Saved 2 billion peoples life
- Consumes 2% of all energy in the world
- Fe and Ru catalyst
- Dissociation of N₂ rate limiting

Hansen et.al. Science 294, 1508 (2001)

Elementary Surface Reactions

Non Adiabatic Processes

DFT theory

hot electrons from chemistry:

- exoelectrons Cl₂ + K, NO(v=15) + Cs/Au
- vibrational de-excitation

 -adsorbates: CO/Cu
 -scattering: NO/Au, H₂/Cu
 -associative desorption: N₂/Ru
- chemicurrent H + Ag/Si

e-h pair excitations? Energy Transfer

Pump

non-adiabatic vibronic-coupling

Atom Specific Probe

Element Sensitive

Chemical Shifts

Stöhr et.al

Spectroscopies based on Fixed Incident Photon Energy

Core Level Photoelectron Spectroscopy

X-Ray Emission Spectroscopy

Core Level Shifts and Geometry c(2x2)CO/Ni(100) C1s O1s Intensity (arb. units) hollow on top CO/H/Ni(100) Intensity (a.u.) c(2√2x√2)R45° C_{1s} $\hbar\omega = 426 \text{ eV}$ hollow top 288 287 286 285 111111 533 532 286.5 285.5 Binding Energy (eV) Binding Energy (eV) J. El spec. 126, 3 (2002) N₂/Ni 541 ΔΕ IP "O down" cluster θ-IP "H down" cluster 540 1.5 eV ► 0 539 N/Ni 2.0 eV 538 537 Minimum distance of H2O layer from surface (Å) 395 405 400 410 Phys.Rev.Lett. 89, 276102 (2002) binding energy/eV

X-ray Emission Spectroscopy

Phys. Rev. Lett. 78 (1997) 2847, Surf. Sci. Reps. 55 (2004) 49.

Femtosecond Chemistry

Haber-Bosch

$N_2 + 3H_2 \rightarrow 2NH_3$

diffusion barrier <50 meV desorption barrier >500 meV

Potential First Experiment

Population of hot electrons on adsorbate Antibonding states Desorption Reaction N +H → NH

Non Resonant Excited XES

Nilsson et. al, Catal. Lett. 100, 111 (2005)

Potential Program

Catalysis

- N₂ Dissociation and N hydrogenation on Ni, Fe and Ru, Ammonia Synthesis
- O₂ Dissociation and O hydrogenation on Ni, Pt, Fuel Cell Hydrogen
- O Recommendation to O_2 on Ni, Pt and Ru O_2 , **Electrolysis Hydrogen**
- CH₄ dissociation and activation, **Steam Reforming Hydrogen**
- CO oxidation with O on Ru and Pt, Exhaust Catalysts
- CO and NO to CO₂ and N₂ on Rh, **Exhaust Catalysts**
- CO₂ and H₂ to methanol on Cu, Methanol Synthesis
- CO and H₂O on Cu, Water Gas Shift for Hydrogen

Other

- Carrier Dynamics in semiconductors, Solar Cell
- TiO₂ photocatalysis, Water Splitting for Hydrogen
- Redox processes at environmental interfaces, Environmental Science
- Solvated electrons, Radiation Chemistry

Measures complete time history around t=0 in single shot

Count rate: ALS/SSRL and LCLS

ALS/SSRL: 10¹³ photons/sec

600 sec accumulation is necessary for XES!

LCLS: 10¹³ photons/shot

= 10¹⁵ photons/sec

6 sec accumulation for XES!

Radiation damage: ALS/SSRL and LCLS

A large sample size is beneficial

10 micron/shot scan rate 2000 shots accumulation Improve spectrometer 50

10 x statistic as ALS/SSRL but in 100 time frames

Space Charge Effect: Kinetic Energy Shift and Broadening

Energy Shift @ 10mm

Energy Broadening @ 10mm

Space Charge Summary

- Experiments are **feasible at < 1nA**
- Low KE => Energy Shift
- Same KE => Energy Broadening
- 1nA: ~ 20eV Eshift ~ 0.6eV Ebroad
- 0.1nA: ~ 2eV Eshift ~ 0.1eV Ebroad

Estimated PES count rate

5000 emitted electrons per shot in spectral region with 0.1 nA
10% detection efficiency, polarized light, Scienta spectrometer, R4000
500 electrons per shot in spectral region
50 time frames gives 10 counts per shot
1 counts on peak per shot and time frame with 1 eV FWHM

2000 counts on spectral peak with 50 simultaneous times in one surface preparation

+ In reality electrons will be emitted in larger angle spread than assumed

Acknowledgement

- Hirohito Ogasawara-SSRL
- Dennis Nordlund-SSRL
- Alan Luntz-Palo Alto

Core Hole Clock Method

Sandell et. al. Surf. Sci. 429, 309 (1999)

Atom specific probing of charge transfer

CH₂

285

THz radiation and molecular vibration

THz = Far-IR (~0.01[eV], ~30[μ m]) can excite thermal process: lattice vibration, adsorbate-metal vibration.

fs laser: hot electron problem

THz: NO hot electron

Temperature jump ensues the motion of adsorbate and stimulates surface chemical reactions.

Temperature jump

Temperature jump ensues the motion of adsorbate and stimulates surface chemical reactions.

THz radiation and surface chemistry

THz electric field ~ Coulomb force between e⁻ and the nuclei manipulation of molecule, coherent control molecular motion

How to probe THz induced process

on-axis radiation, soft X-ray, hard X-ray, off-axis radiation: THz **Pump:** THz, **Probe:** XPS, XES, XAS, XRD, IR

Ultrafast processes in water and ice

