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1.1. INTRODUCTION
 
The Stanford Linear Accelerator Center (SLAC), along with Argonne National Laboratory (ANL), 

Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles 
(UCLA), is constructing a Free-Electron Laser (FEL) facility, which will operate in the wavelength range 
1.5 nm - 0.15 nm. This FEL, the Linac Coherent Light Source (LCLS), utilizes the SLAC linac and will 
produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost 
complete transverse coherence.   

 
The final one-third of the SLAC linac will be used as the source of electrons for the LCLS. The high 

energy electrons will be transported across the SLAC Research Yard, into a tunnel which will house a long 
undulator. In passing through the undulator, the electrons will be bunched by the force of their own 
synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays.  By 
varying the electron energy, the FEL X-ray wavelength will be tunable from 1.5 nm to 0.15 nm. The LCLS 
will include two experimental halls as well as X-ray optics and infrastructure necessary to create a facility 
that can be developed for research in a variety of disciplines such as atomic physics, materials science, 
plasma physics and biosciences.   

 
This Conceptual Design Report, the authors believe, confirms the feasibility of designing and 

constructing three X-ray instruments in order to exploit the unique scientific capability of this new LCLS 
facility.   

 
The technical objective of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, 

and install at the LCLS three hard X-ray instruments that will complement the initial instrument included in 
the LCLS construction.  As the science programs advance and new technological challenges appear, 
instrumentation needs to be developed and ready to conquer these new opportunities.  The LCLS 
instrument concepts have been developed in close consultation with the scientific community through a 
series of workshops team meetings and focused reviews.  In particular, the LUSI project instruments have 
been identified as meeting the most urgent needs of the scientific community based on the advice of the 
LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the 
breadth of the scientific community.   

 

1.2. INSTRUMENTS
 
The LUSI project plans to build three hard X-ray instruments over a period of six fiscal years (FY2007 

-- FY2012). One of the instruments will be optimized for hard X-ray studies of ultrafast dynamics at the 
atomic level, addressing basic problems in chemistry and materials science. The second instrument will 
concentrate on hard X-ray coherent imaging of nano-particles and large biomolecules. The third instrument 
will focus on the study of equilibrium dynamics in condensed systems using X-ray photon correlation 
spectroscopy.  These instruments will complement the initial instrument being built at LCLS, which is 
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directed towards atomic physics.  The instruments and beam transport and optics are described in Chapter 3 
through Chapter 6, of this Conceptual Design Report (CDR).   

 

1.3. PERFORMANCE CHARACTERISTICS 
 
The LCLS will be an X-ray source with unprecedented brightness and peak power.  It will provide 

pulses of X-rays of duration of about 100 fs or less, in a wavelength range from 1.5 nm to 0.15 nm.  In 
average brightness it will match or exceed existing storage ring-based sources.  In peak brightness, it will 
surpass existing sources by a factor of 1010.  The performance characteristics of the LUSI instruments, 
shown in Table 1-1, will be commensurate with these unique source characteristics. 

 

Instrument Parameter Capable of Achieving Actual 
Measurement 

Energy Range 4 keV - 25 keV*  

Energy Resolution 0.1 - 0.002%  
X-ray 
Pump-Probe 

Imaging Detector  1024x1024 pixels 

Energy Range 4 keV - 25 keV  

Energy Resolution 0.1%  
Coherent X-ray 
Imaging 

Imaging Detector  760x760 pixels† 

Energy Range 4 keV - 25 keV  

Energy Resolution 0.1 - 0.002%  
X-ray Correlation 
Spectroscopy 

Imaging Detector  1024x1024 pixels 

 
Table 1-1.  Essential Parameters for LUSI Instruments. 

 

1.4. COST AND SCHEDULE 
 
The Total Project Cost is estimated to be in the range $51.8 million - $60.0 million.  A six-year 

construction schedule beginning in FY2007 is proposed.   
 

1.5. ACQUISITION STRATEGY 
 
The lead contractor for acquisition of the LUSI project will be Stanford University, which operates 

SLAC. SLAC will collaborate with two national laboratories, Brookhaven National Laboratory (BNL) and 
Lawrence Livermore National Laboratory (LLNL), in the design/construction of components for the three 
instruments.   

                                                 
 
* Using the fundamental and the third harmonic 
† Provided by LCLS 
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2.1. INTRODUCTION

2.1.1. Background
 
The last thirty years have witnessed an exponential increase in the capability of X-ray sources, and X-

ray physics has seen an explosion of new techniques and applications. The key to this huge change has 
been the development of synchrotron radiation sources based on high-energy electron storage rings. The 
scientific capabilities of synchrotron radiation X-ray sources are reflected in the fact that in the US four 
such facilities are operated by the Department of Energy (DOE) with a collective annual funding level of 
about $200 million (FY2001). In 2001, 6500 scientists made use of these facilities for their research 
programs, which range from fundamental physics to materials science to biology and medicine to 
environmental science [1].  Now, another type of high-energy accelerator has the capability to drive an X-
ray source whose capabilities outshine those of a modern synchrotron source by nearly as much as the 
synchrotron does the 1960's laboratory source.   

 
Advances in accelerator technology have been the driving force in the progress toward brighter 

synchrotron sources, with scientific applications developing in response to the availability of new sources. 
The rate of improvement in source capability has been tremendous: for thirty years X-ray source brightness 
has been increasing exponentially with a doubling time of about 10 months. A modern synchrotron 
radiation source is 11 orders of magnitude brighter than a 1960's laboratory X-ray source. Seldom, if ever, 
in history (perhaps only in the field of visible laser optics) has a scientific discipline seen its tools change so 
dramatically within the active life of a single generation of scientists. Such change makes it very difficult to 
predict the future. For example, no one foresaw the huge impact on biomedical research that has come in 
the last twenty years from synchrotron-based extended X-ray absorption fine structure (EXAFS) 
spectroscopy and protein crystallography, even though those techniques had been developed many years 
previously using laboratory sources. The developing synchrotron source capability has made the techniques 
qualitatively and unexpectedly more powerful as scientific tools.   

 
This history indicates that although it is very difficult to predict the precise nature of the eventual 

applications of the LCLS, a source that is more than 10 orders of magnitude brighter than today's 
synchrotron sources, it is clear that LCLS will make fundamental contributions to our understanding of the 
structure and dynamics of matter on the atomic scale. Over the past ten years there has been much 
consideration of the future development and applications of advanced synchrotron radiation sources. A first 
workshop on "Fourth Generation Light Sources", at SLAC in 1992 [2], concentrated almost exclusively on 
accelerator technology rather than applications. This workshop served to alert the scientific community to 
the possibilities for X-ray Free-Electron Lasers (FEL) driven by high energy linacs, such as the SLAC 
linac. It is interesting to note that a workshop earlier in 1992 on "Applications of X-ray Lasers" [3] did not 
mention FEL sources at all; only chemical lasers were considered. The SLAC workshop directly stimulated 
the first workshops on scientific applications of X-ray FELs [4][5].  The next "Fourth Generation Light 
Sources" workshop, in 1996 at the European Synchrotron Radiation Facility (ESRF) [6], included sessions 
on both sources and applications. The discussions convinced nearly all the participants that linac-based 
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FELs would be the most effective machines for continuing to improve the performance of X-ray sources, 
and in particular, would provide the only viable route to a diffraction-limited hard X-ray source. 
Subsequent workshops at Deutsches Elektronen-Synchrotron (DESY) in 1996 [7][8] and the Advanced 
Photon Source (APS) in 1997 [9] have assumed that future fourth generation X-ray user facilities will be 
based on linac FELs, and have attempted to foresee the new science that these sources will bring. These 
workshops, as well as more than 20 others, have firmly established the scientific opportunities that LCLS 
offers.   

 

2.1.2. Summary Project Description 
 
In its vision of the future from 2003, “Facilities for the Future of Science: A Twenty-Year Outlook,” 

the DOE Office of Science placed the LCLS tied for third in near term priorities, and the highest priority 
for the Basic Energy Sciences (BES) division. The LCLS will be a scientific user facility for the application 
of XFEL radiation to experimental science. It will bring a completely new dimension to the use of X-rays 
to study matter through its unique properties never before available.  X-rays from synchrotron light sources 
are currently used to study static atomic structures, but the synchrotron light sources cannot produce 
ultrashort pulses, so they cannot resolve the ultrafast motions of atoms during dynamical events such as 
chemical reactions. The LCLS represents a revolutionary advance within the synchrotron radiation world, 
since it offers the X-rays associated with synchrotron light sources, and the ultra-short, ultra-intense pulses 
required to study dynamics on the nanoscale. The tremendous brightness of the LCLS X-ray pulse will also 
be invaluable for creating and probing matter in extreme conditions, and for flash-imaging of nano-objects, 
such as small clusters of molecules and possibly individual single molecules.   

 
The LCLS Scientific Advisory Committee (SAC) has recommended experiments in five scientific 

disciplines or thrust areas for the initial operation of the LCLS. These disciplines cover a variety of 
scientific areas: atomic physics, plasma physics, chemistry, biology and materials science.   

 
Three of the thrust areas establish the basis for the designs of LUSI.  They also provide the 

requirements for sample environments, specialized X-ray detectors, diagnostics, data acquisition and 
controls.  The definition of the required synchronization of external lasers with the LCLS beam is derived 
from the experimental needs of these first five experiments.  In general, these designs are extensions of 
common practice at synchrotron sources today, but become more demanding due to the unprecedented peak 
power, short pulse length, coherence, and repetition rate of the LCLS beam.  All of these requirements are 
incorporated into the three instruments within LUSI: optical laser pump/X-ray probe studies in chemistry 
and materials science, coherent diffraction imaging of single particles and biomolecules, and the 
application of X-ray photon correlation spectroscopy to the study of nano-scale dynamics.   

 

2.1.3. Project Scope 
 
The scope of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, and install at 

LCLS three hard X-ray instruments that will exploit the unique scientific capability of this new facility. As 
the science programs advance and new technological challenges appear, instrumentation needs to be 
developed and ready to conquer these new opportunities. These three LCLS instrument concepts are being 
developed in close consultation with the scientific community through a series of workshops, conferences 
and focused review committees.  In particular, the three LUSI project instruments have been identified as 
meeting some of the most urgent needs of the scientific community in supplementing the capabilities of the 
initial LCLS instrument based on the advice of the LCLS SAC.   

 



C O N C E P T U A L  D E S I G N  R E P O R T  
______________________________________________________________________________________ 

P R O J E C T  O V E R V I E W   2-3 

LUSI plans to build three instruments over a period of six fiscal years (FY2007 - FY2012).  One of 
these instruments will be optimized for hard X-ray studies of ultrafast dynamics at the atomic level, 
addressing basic problems in chemistry and materials science.  The second instrument will concentrate on 
hard X-ray coherent imaging of nano-particles and large biomolecules. The third instrument will use hard 
X-rays to study nanoscale dynamics using X-ray photon correlation spectroscopy. This instrumentation will 
complement the other instrument at LCLS, which is directed towards atomic physics.   

 
A brief description of the three LUSI instruments is as follows:   
 
X-ray Pump-Probe Instrument
The X-ray Pump-Probe Instrument (XPP) will predominantly use a fast optical laser to generate 
transient states of matter, and use the hard X-ray pulses from the LCLS to probe the structural 
dynamics initiated by the laser excitation. The laser pump will have the ability to conduct precise 
optical manipulations, in order to create the desired excited states.   
 
Coherent X-ray Imaging Instrument
The Coherent X-ray Imaging Instrument (CXI) will take advantage of the extremely bright, ultrashort 
LCLS pulses of hard X-rays to allow imaging of non-periodic nano-scale objects, including single 
biomolecules or small clusters, at or near atomic resolution.   
 
X-ray Correlation Spectroscopy Instrument
The X-ray Correlation Spectroscopy Instrument (XCS) will take advantage of the unique opportunity 
provided by the unprecedented brilliance and narrow pulse duration of the LCLS to observe dynamical 
changes of large groups of atoms in condensed matter systems over a wide range of time scales using 
X-ray Photon Correlation Spectroscopy (XPCS).   
 

2.2. INSTRUMENTS

2.2.1. Design Goals 
 
In general, the LUSI instrumentation must: 
 

� Fill a scientific need identified by the community, as demonstrated by strong support from a 
substantial group of potential users; 

 
� Perform better than other existing instrumentation intended for its class of science; 

 
� Be compatible with the characteristics of the LCLS facility, including safety conditions, 

source performance and physical constraints imposed by other instruments and the existing 
physical plant.   

 
The principal technical performance parameters that must be met by this instrumentation will be 

specified in the LUSI Project Execution Plan (PEP) and are given in Table 2-1.  Compatibility with the 
LCLS facility characteristics will be assessed by the LCLS organization, and scientific oversight is 
provided by the LCLS SAC.  Technical advice will come from the LCLS Facilities Advisory Committee 
(FAC).   The LCLS and LUSI also receives additional advice on all detector choices and developments 
from an external LCLS Detector Advisory Committee (DAC).   
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Instrument Parameter Capable of Achieving Actual 
Measurement 

Energy Range 4 keV - 25 keV*  

Energy Resolution 0.1 - 0.002%  
X-ray  
Pump-Probe 

Imagining Detector  1024x1024 pixels 

Energy Range 4 keV - 25 keV  

Energy Resolution 0.1 %  
Coherent X-ray 
Imaging 

Imagining Detector  760x760 pixels† 

Energy Range 4 keV - 25 keV  

Energy Resolution 0.1 - 0.002%  
X-ray Correlation 
Spectroscopy 

Imagining Detector  1024x1024 pixels 

 
Table 2-1.  Essential Parameters for LUSI Instruments. 

 

2.3. ALTERNATIVE ANALYSIS 
 
The purpose of an alternatives analysis is to choose the most efficient, cost effective path to the desired 

goal, the design, construction and installation of state-of-the-art instrumentation at the LCLS facility. 
Evaluation of alternatives may be made in terms of the three components of a project baseline: technical 
performance, cost and schedule. The most compelling argument for the construction of the LUSI 
instruments is the existence of the LCLS itself and the staff and infrastructure at SLAC.  There are no 
technically comparable existing instruments in the U.S. that could be moved to LCLS, and so there is no 
alternative but to build new ones.  The LUSI instrumentation will be optimized to match the characteristics 
of the LCLS source and to take advantage of the fact that the LCLS facility will be the world's first X-ray 
free electron laser when it begins early operation in 2009.  Therefore, no alternative locations for the 
instruments were considered.   

 

2.3.1. Cost
 
The SLAC site is the best choice among alternative sites for the design and construction of the LUSI 

instrumentation due to the close proximity of the LCLS site and the critical interactions between the LUSI 
and LCLS staffs on a daily basis. This does not preclude the use of expertise at other laboratories as 
attested by existing and pending MOU’s with BNL and LLNL.  

 
 

                                                 
 
* Using the fundamental and the third harmonic 
† Provided by LCLS 
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2.3.2. Schedule
 
Early access to the extraordinary capabilities of the LCLS is extremely important in terms of the 

scientific opportunities that the facility will offer. In order to utilize the LCLS as rapidly as possible, the 
installation of the instrumentation will be staged over a four year period beginning in FY2009.  Studies to 
examine the possibility of accelerating this schedule are ongoing.  

2.3.3. Technical
 
All instruments are being developed in ways similar to others recently built worldwide.  However, 

throughout the life of the project technological advances will be explored and refinements in design 
concepts made in order to provide the best state-of-the-art instruments. 

 

2.4. PROJECT SCHEDULE 
 
Major milestones for this project schedule are: 
 

CD-1 CD-2 CD-3 CD-4 
LUSI Project 
CD-0 Mission Need 
Approved: Aug. 2005 Cost Range 

Approval 

Performance 
Baseline 
Approval 

Construction 
Start Approval 

Start of 
Operations 

Coherent X-ray 
Imaging 

X-ray  
Pump-Probe  

(a) Dec. 2007 (a) Jul. 2008 (a) Feb. 2010 
(b) Mar. 2012 

X-ray Correlation 
Spectroscopy 

July 2007 

(b) Oct. 2009 (b) Mar. 2010 (b) March 2012 

Project Completion (b) Mar. 2012 

 
Table 2-2.  Major Project Schedule Milestones.  (a) and (b) refer to separate phases of the CD's.   

 
R&D funds totaling $4.9 million (FY2005 - FY2007) have allowed significant development work to 

begin on two high-performance detectors.  However, the schedule is strongly dependent upon contract 
award dates in the first year of the project.   

 

2.5. COST ESTIMATE 
 
The current estimated total project cost (TPC) range is $51.8 million - $60.0 million, which is 

portrayed in Table 2-3 below. It is based on a six-year (FY2007- FY2012) construction schedule and is 
consistent with the funding profile displayed in Table 2-4 below.  A separate budget request will be 
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submitted prior to CD-3 approval for authorization to place long-lead procurements for detectors and 
optical components.   

 

WBS Description 
Estimated  

Minimum Cost 
($million) 

Estimated 
Maximum Cost 

($million) 

1.1 Project Management 5.5 5.6 

1.2 X-ray Pump-Probe  8.1 10.1 

1.3 Coherent X-ray Imaging 7.1 8.6 

1.4 X-ray Correlation Spectroscopy 6.2 7.7 

1.5 Diagnostics 2.7 3.1 

1.6 Controls 6.0 6.8 

 Contingency 11.3 13.2 

2.0 Other Project Costs 4.9 4.9 

LUSI Total Project Costs 51.8 60.0 

 
Table 2-3.  Preliminary Estimate by WBS Elements for the LUSI Project. 

 

2.6. FUNDING REQUIREMENTS 
 
The funding profile depicted below is consistent with a six-year construction project beginning in 

FY2007 and ending in FY2012.   
 

Fiscal Year LUSI- Projected Funding 
Profile  
($million) Prior 

Years 2007 2008 2009 2010 2011 2012 

Total 

Project Costs             
(WBS 1.0)  0.5 10.0 15.0 15.0 10.0 4.6 55.1 

Other Project Costs   
(WBS 2.0) 3.4 1.5      4.9 

Total Project Costs   
(TPC) 3.4 2.0 10.0 15.0 15.0 10.0 4.6 60.0 

 
Table 2-4.  Projected Funding Profile for the LUSI Project. 
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2.7. RISK ASSESSMENTS AND STRATEGIES 
 
All instrumentation in the LUSI project is being developed in ways similar to other instruments 

recently built worldwide, for which there are numerous cost benchmarks. The size of the risk is based on an 
assessment of how much the costs might shift due to refinements in design concepts and improvements in 
technology. Throughout the life of the project, technological advances will be explored in order to provide 
the best state-of-the-art instruments.  At this time the LUSI project is considered a low-risk investment 
since the preliminary parameter requirements proposed by the Science Teams are considered achievable 
within current technical capabilities.  

 

2.7.1. Technical Risks 

2.7.1.1. Performance of Optics 
 
The critical X-ray optics within LUSI are the focusing elements and the offset monochromators.   

Focusing is provided by LUSI for both the pump-probe instrument as well as the coherent imaging 
instrument.  For the larger focal spot sizes, commercial beryllium lens technology has been chosen.  This 
technology has been implemented at many hard X-ray synchrotron beamlines, and is particularly 
appropriate for the LUSI application due to the fact that beryllium is one of the few materials that can 
transmit the high peak power of the LCLS beam without damage. This focusing option thus has minimal 
risk.  For the smallest focus required for the coherent imaging application (0.1 micron), a Kirkpatrick-Baez 
mirror system is the best choice.  Because of the grazing-incidence geometry and the source-to-optic 
distance of ~ 400 meters, the damage issue is not of concern.  Though there is some risk to achieving focal 
spot size and throughput specifications due to stringent requirements for the mirror quality and stability,   
performance specifications more stringent than those needed here have already been achieved at the 
European Synchrotron Radiation Facility in Grenoble, France, the SPring-8 facility in Harima, Japan and 
the Advanced Photon Source at Argonne.  Finally there are the offset monochromators, one for the pump-
probe experiment and one for the X-ray correlation spectroscopy (XCS) instrument.  These systems are 
conceived as using very thin silicon crystals, to permit multiplexing of the LCLS hard X-ray beam.  There 
is a risk that these crystals will not perform as expected and/or they cannot be fabricated.  This risk can be 
mitigated by using instead somewhat-thicker diamond crystals. These crystals are readily available, but 
would give a loss in intensity to the pump-probe and XPCS experiments.   

 

2.7.1.2. Performance of Detectors 
 
The LUSI instruments require the development of detectors that are capable of readout rates that match 

the LCLS pulse rate, 120 Hz.  X-ray cameras with this readout rate are not commercially available, so some 
development will be needed. This development is being carried out by BNL.  There is risk associated with 
achieving the readout rate while maintaining the spatial resolution and noise levels required by the 
experiments.  The required spatial resolution has already been demonstrated with detectors with  slower 
readout rate.  The benefit of developing faster detectors will be the efficient use of the LCLS beam.  
However, commercial detectors with readout speeds of ~ 1 Hz are available that will meet the other 
requirements for the X-ray pump-probe experiment, and could be employed to mitigate the risk associated 
with detector development.  For the XPCS experiment there is also the need for very small (20-30 �m) 
pixel sizes, but commercial alternates exist with perhaps a factor of 10 loss in detector efficiency as well as 
a loss in readout speed.  These commercial alternates could mitigate the risk but at a significant loss of 
performance.   
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2.7.2. Schedule Risks 
 
Although the schedule is dictated by the funding profile and does not reflect the technological demands 

of the project, two major drivers will be the design and fabrication of optical components, and the 
development of fast detectors (currently underway).  A request for approval to place long-lead 
procurements, and discussions about how to reduce the assembly time of these items, are expected to ease 
the schedule risk and perhaps permit a shortened schedule.  

 

2.7.3. Cost Risks 
 
The cost estimate is judged to be of low risk in terms of completing the project within the budget 

range. The instrument designs and components are mostly similar to those already developed for other X-
ray instruments, and most technical equipment will be ordered from commercial vendors.   

 
No unusual risks are foreseen in providing adequate funding.  The project’s funding needs have been 

included in the BES program’s out-year funding plans.   
 
During the cost estimate process risk assessments were developed for each major sub-system, usually 

at work breakdown structure (WBS) element level 4 or lower, using a risk-based contingency approach. 
This approach provides a consistent, objective analysis procedure across the project. Based on this 
approach the LUSI cost estimate includes a 31% contingency.   

 

2.8. STAKEHOLDER INPUT 
 
Throughout the planning process for the LCLS and LUSI, every effort has been made to maintain and 

promote communication with the agencies responsible for science policy in the US, the prospective LCLS 
user community, and the management of SLAC. Since it was first conceived in 1992, the evolution of the 
LCLS design has been guided by input from the synchrotron science community. The Basic Energy 
Sciences Advisory Committee has carried out two formal assessments of the future of synchrotron radiation 
science in the US, the role of free-electron lasers in general and the LCLS in particular.   

 
The LCLS Science Advisory Committee has provided guidance and input, as have the 34 workshops 

held since 1992, which have addressed scientific opportunities and challenges of importance to the LCLS.   
 
The SLAC Directorate and Faculty have been actively involved in planning the integration of LCLS 

operations and science with the rest of the SLAC Scientific Program. The SLAC Science Policy 
Committee, an advisory body to the President of Stanford University, has received regular updates on 
LCLS and LUSI activities and planning.   

 
The concept for each LUSI instrument was developed in collaboration with the Science Team for that 

instrument.  Science Teams include scientists from academia, DOE laboratories, other Government 
laboratories, and industry. The initial choice of instrument concepts was carried out by the LCLS SAC, 
with a general call for input from the community followed by consideration of compatibility with the LCLS 
facility.   For the selection the SAC was charged to identify instruments that would support the greatest 
scientific benefit to the U.S. research community and to the DOE mission.   
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2.9. ACQUISITION STRATEGY 
 

The lead contractor for acquisition of the LCLS Ultrafast Science Instruments (LUSI) is Stanford 
University, which operates the Stanford Linear Accelerator Center. SLAC will collaborate with two other 
national laboratories (BNL and LLNL) to design and construct the LUSI instrumentation.  

2.10. OVERALL LAYOUT 
 
The overall layout of the LCLS/LUSI experimental area is shown schematically in Figure 2-1, 

including the Near Experimental Hall (NEH), the X-ray transport tunnel, and the Far Experimental Hall 
(FEH).  The layout of the NEH is shown schematically in Figure 2-2.  Hutch #1 is reserved for a future soft 
X-ray imaging instrument.  Hutch #2 has the LCLS AMO instrument and is reserved as well for a future 
soft X-ray pump-probe instrument.  Hutch #3 contains the LUSI hard X-ray pump-probe instrument.  The 
layout of the FEH is shown in Figure 2-3, where Hutch #4 contains the LUSI X-ray correlation 
spectroscopy instrument.  Hutch #5 contains the LUSI coherent X-ray imaging instrument.   

 

2.11. SUMMARY
 
In summary, this Conceptual Design Report (CDR) describes the design, fabrication and installation of 

three state-of-the-art instruments that will exploit the unique scientific capability of the LCLS facility. One 
of the instruments will be optimized for hard X-ray studies of ultrafast dynamics at the atomic level, 
addressing basic problems in chemistry and materials science.  The second instrument will concentrate on 
hard X-ray coherent imaging of nano-particles and large biomolecules.  The third will utilize hard X-rays to 
study equilibrium dynamics at the nanoscale with XPCS.  

 
 

 
 

Figure 2-1.  Overall layout of LCLS/LUSI Experimental Areas.  Included are the Near Experimental Hall 
on the left, the Far Experimental Hall on the right, and the X-ray transport tunnel connecting 
the two halls.   
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Figure 2-2.  Conceptual layout of the Near Experimental Hall showing the LUSI XPP endstation and LCLS 
AMO endstation.  Hutch #1 is reserved for a future soft X-ray imaging instrument, Hutch #2 
has the LCLS AMO instrument and is reserved as well for a future soft X-ray pump-probe 
instrument.  Hutch #3 contains the LUSI hard X-ray pump-probe instrument.   

 
 

 
 

Figure 2-3.  Conceptual Layout of the Far Experimental Hall showing the LUSI CXI and XCS endstations.  
Hutch #4 contains the LUSI X-ray correlation spectroscopy instrument (XCS) and Hutch #5 
contains the LUSI coherent X-ray imaging instrument (CXI).   
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Biological, chemical, and physical processes involve the time-dependent transformation of matter on 

the atomic scale.  Examples of these processes with technological and environmental significance are the 
photosynthetic generation of chemical energy, the catalytic production of fertilizer, the chemical 
degradation of pollutants, and the melting of ice. These structural transformations involve the motion of 
electrons, atoms, and molecules over very short distances (10-9 m) and very short time scales (10-12 s). 
Though much has been learned about these dynamical processes from previous work, particularly studies 
using X-rays and optical lasers, no existing technology can provide direct observation of atomic motions on 
ultrafast time scales.   

 
The X-ray pump-probe diffraction (XPP) instrument will enable the study of stimulated changes in the 

structures of molecules and condensed matter systems.  The changes will typically be stimulated by a short 
pulse of optical laser light, and observed using X-ray scattering techniques. Femtosecond-level 
synchronization between the optical laser and the LCLS X-ray pulse will allow sub-picosecond time 
resolution.   

 

3.1. SCIENTIFIC PROGRAMS 
 
The LCLS will provide transversely-coherent hard X-rays with unprecedented flux and time 

resolution.  These attributes of the LCLS have the potential to revolutionize the experimental investigation 
of structural dynamics with X-ray techniques by directly following the time evolution of the electron 
density during the course of a photo-induced biological, chemical, or physical transformation.  Some 
examples of the scientific programs that will be pursued by the XPP instrument are described below.   

 
Dynamics of photo-induced phase transitions:  Optical manipulation of solids can lead to photo-

induced phase transitions on the ultrafast time scale. For many of these materials, a change in crystal 
symmetry accompanies a magnetic, ferroelectric, or metal-insulator phase transition. These materials have 
the potential to be utilized as ultrafast switches in magnetic and electro-optic devices and time-resolved X-
ray crystallography provides an ideal tool for tracking the changes in atomic structure. For those systems 
that undergo a 1st-order photo-induced phase transition, time-resolved X-ray scattering has the potential to 
provide information about the structure and size of the new phase nucleus with previously unachievable 
detail.   

 
Time-resolved spectroscopic studies of charge and spin dynamics: Charge transfer and spin 

crossover processes in transition-metal compounds play a critical role in the materials, chemical, and 
biological sciences. High-temperature superconductivity and colossal magnetoresistivity are among the 
important materials properties influenced by charge and spin dynamic in transition-metal compounds. 
These degrees of freedom influence industrial and biological catalysis as well. Transition-metal 
coordination compounds also show significant potential for solar energy harvesting and photosynthesis. 
The electronic degrees of freedom prove to be the most critical dynamical properties of these processes, 
making time-resolved XES, XANES, and RIXS natural tools for studying these systems.  
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Figure 3-1.  Femtosecond atomic displacements generated in InSb and Bi in response to ultrafast 

photoexcitation of charge carriers.  The data sets were measured using time-resolved X-ray 
diffraction at the Sub-Picosecond Pulse Source [10][11]. 

 
Studies of intense laser-matter interactions:  The structural response of materials to femtosecond 

laser excitation differs fundamentally from the response to excitation with longer pulses, because the 
generation of carriers by linear and nonlinear absorption occurs faster than the time scale for carrier 
diffusion and carrier-phonon scattering. Consequently, the photon field can deposit enormous quantities of 
energy into electronic degrees of freedom, while the vibrational internal energy remains comparatively 
unperturbed. Excitation of carriers can alter the ionic potential energy landscape of a material and can lead 
to atomic motion [10][11] (see Figure 3-1).  Identifying the important distinctions between materials and 
further correlating the material response with material electronic structure remains an important objective 
for understanding the light-matter interaction. Further knowledge in this field will enhance our ability to 
manipulate and control material structure with light.   

 
Time-resolved studies of chemical dynamics in solution: The majority of chemical reactions in 

biological, environmental, and industrial settings occur in disordered media, with liquid water being the 
ubiquitous example. The development of methods for studying ultrafast time-resolved diffuse scattering in 
liquids will be an important component of the LUSI project. Pioneering diffuse scattering experiments have 
been conducted at ID-9 at the ESRF [12]. While these studies have demonstrated the viability of transient 
diffuse scattering measurements in liquids, the technique when applied at a synchrotron has insufficient 
time resolution for studying chemical dynamics. For these studies the improved time resolution of the 
LCLS will provide a significant advantage over synchrotron facilities.   

 
Dynamics of photoactive proteins:  The variability and efficiency of proteins make them powerful 

molecular foundries. The size, diversity and complexity of proteins also make them challenging to study 
and understand with atomic detail. X-ray crystallography helped launch the molecular biology revolution 
and maintains a position of unique prominence in structural biology as the most powerful tool for 
determining biomolecular atomic structure. While enormously useful, the equilibrium structure cannot 
capture the full chemical significance of a protein. To understand how a protein functions at a mechanistic 
level of detail requires measuring in real time the nuclear motion that accompanies its function. Time- 
resolved protein crystallography represents the most powerful tool for achieving this experimental 
objective. While time-resolved crystallographic measurements have been conducted with time resolution as 
short as 150 ps, Figure 3-2 demonstrates that global structural changes have already occurred at the earliest 
time delay [13]. To observe and understand how a local perturbation propagates from the epicenter of the 
distortion to points far removed will require X-ray pulse durations and amplitudes only achievable with 
linac-based sources. By extending the time resolution of these measurements into the femtosecond regime, 
the ability to observe how a local distortion can be channeled into a concerted global structural change will 
be possible for the first time.   
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Figure 3-2.  Experimentally determined electron densities of the myoglobin molecule before and 100 ps 
after photolysis [13].  

 

3.2. INSTRUMENT DESCRIPTION 
 
The pump-probe instrument will predominantly use a fast optical laser to generate transient states of 

matter, and the hard X-ray pulses from the LCLS to probe the structural dynamics initiated by the laser 
excitation. The laser pump will have the ability to conduct precise optical manipulations, in order to create 
the desired excited states. The instrument design will emphasize versatility. To maximize the range of 
phenomena that can be excited, it will be necessary to be able to manipulate the laser pulse energy, 
frequency, and temporal profile. X-ray scattering will be the dominant tool for probing the laser-induced 
structural changes, while X-ray absorption and emission spectroscopy will probe changes in electronic 
structure. These experiments require the union of four experimental capacities: the generation and delivery 
of X-ray and laser pulses to the sample, the preparation of the excited state in the sample, and the detection 
of the X-ray scattering pattern or X-ray absorption and emission.   

 

3.2.1. Pump-Probe Techniques 
 
“Traditional” Pump-probe: Traditional pump-probe techniques will be used when the experimental 

phenomena being probed has a characteristic time scale that is longer than the ~ 1 ps inherent X-ray/laser 
jitter.  For this class of experiments the temporal evolution of the system will be traced by delaying the 
arrival time of the laser with respect to the FEL radiation with time steps greater than 1 ps.  This can be 
accomplished either by changing the optical path length of the laser system with a mechanical delay line or 
by changing the RF reference phase that the laser is stabilized to using a microwave phase shifter.  Thus, 
the data is acquired sequentially in a controlled manner. A schematic of this concept is displayed in Figure 
3-3.  A ~ 1 ps temporal resolution is achievable using this method.   
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Figure 3-3.  Schematic representation of a time-resolved X-ray scattering experiment.  The time evolution 
of the photo-induced process is measured by taking snapshots of the sample as the delay 
between the laser pump X-ray probe is sequentially varied in a controlled manner [14].     

Single Shot Geometry: Femtosecond temporal resolution is needed for many proposed XPP 
experiments. The temporal resolution can be increased to this level, for some experiments, by 
implementing a single shot diffraction geometry [10][15][16].  Figure 3-4 displays the general concept of 
this technique.  The X-ray and optical laser pulses impinge on a crystal surface non-collinearly. The 
incidence angle difference causes the X-ray probe to sweep across the crystal surface at a different rate than 
the optical laser.  Thus, a range of pump-probe delays is imprinted across the crystal surface.  The image of 
the diffraction spot is captured with an X-ray area detector and the temporal information is encoded along a 
spatial dimension of the spot.   

 
The ability to acquire a range of time points in a single shot is critical for samples that exhibit non-

repetitive response to photoexcitation. It is also advantageous to use this experimental technique when the 
optical laser induces irreversible alterations to the sample. In these instances the sample must be translated 
after every optical laser pulse and it is beneficial to acquire as much information as possible for each X-ray 
pulse since there is a limited amount of sample.   
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Figure 3-4.  Single shot imaging technique used for studying irreversible dynamics in InSb at the SPPS 

[10]. The path of the laser pulse in red and the X-ray pulse in blue appear (A). The crossed-
beam geometry results in a time delay sweep across the surface of the crystal, mapping time 
delay into a spatial coordinate. By imaging the diffracted intensity, a range of time delays can 
be measured with a single pulse pair, as shown in (B). The reduction in diffraction intensity in 
the center of the image resulted from laser induced disordering of the InSb crystal. 
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Figure 3-5.  X-ray data acquired using non-sequential techniques at the SPPS [11]. Time-resolved X-ray 
diffraction data is displayed in (A) and corresponding timing histograms in (B) after 10, 100 
and 1000 pulse pairs. 

   
Non-sequential Sampling: Many experiments that require femtosecond temporal resolution cannot be 

performed in single shot geometry due to insufficient signal-to-noise ratio, sample geometry, sample type 
or X-ray scattering technique used. A diagnostic is required for these situations to cross-correlate a portion 
of the optical laser pump with the X-ray probe on a shot-by-shot basis. In this manner, the pump-probe 
timing is measured for every pulse pair and the intrinsic temporal jitter is used to sample the temporal 
evolution of the studied system non-sequentially (see Figure 3-5).  However, a hard X-ray/optical laser 
cross-correlation technique with sufficient temporal resolution and signal-to-noise ratio appropriate for 
single shot operation has yet to be realized.  Technical advancements are being made in the XUV spectral 
regime at the FLASH facility but it is unclear if these techniques can be extended into the hard X-ray 
regime [17],[18].  A robust timing diagnostic was developed at the Sub-Picosecond Pulse Facility (SPPS) 
facility that measured the relative timing of a femtosecond optical laser with respect to the SLAC electron 
bunches using electro-optic sampling [19].  A similar diagnostic will be implemented in the LUSI project to 
obtain femtosecond timing information for all LCLS endstations.  The details of the electro-optic timing 
diagnostic are discussed in Chapter 7.   

 

3.2.2. Overall Concept Layout 
 
Figure 3-6 displays a block diagram of the XPP instrument. The main components are the offset 

double-crystal monochromator, X-ray optics, X-ray diagnostics, ultrafast laser system, X-ray diffractometer 
system, detector and small angle scattering beamline. Most of the components will be able to translate 
between the monochromatic beamline and direct beamline, dependent upon the requirements of a particular 
experiment. Component specifications are summarized in Table 3-1.  

 
The beamline components will be constructed with a common vacuum interface and working distance, 

whenever possible, to permit the interchanging of components. This design requirement will maximize the 
flexibility of the experimental configuration. This capability is important since some experiments will 
require a particular ordering of the beamline components that may deviate from the normal beamline 
configuration.   

 
The majority of the components comprising the ultrafast laser system will reside in the laboratory 

space above the X-ray hutch on the second floor of the NEH.  A vacuum optical transport line will deliver 
laser radiation to the optical tables within the XPP hutch.  Pulse compression and frequency conversion 
optics will reside in the XPP hutch.  
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Figure 3-6.  Block diagram of the XPP instrument. Transparent blocks represent items that are transferable 
from the monochromatic beamline to the direct beamline. 

 

Item Purpose Specification 

Offset  
Monochromator 

Multiplex FEL radiation, narrow 
FEL spectrum 

� 10-4 spectral bandwidth,  
600 mm horizontal offset 

Slit System Define X-ray beam size 5-5000 �m gap,  
1 �m accuracy 

Attenuator System Control incident intensity onto 
sample 

Up to 106
 attenuation at 1.5 Å, 

4 steps per decade 

Diagnostics Intensity monitor, 
position monitor 

0.1% relative intensity measurement, 
< 5% incident X-ray attenuation 

Refractive Focusing 
Lenses Increase incident X-ray fluence 2-10 �m, 40-60 �m spot size at 1.5 Å, 

2-10 �m spot size at 0.5 Å 

Laser System Photoexcitation of samples 
Ultrafast pulse duration (� 50 fs), 
Up to 20 mJ pulse energy at 800 nm, 
120 Hz repetition rate 

X-ray Diffractometer 
System 

Orient samples and move detector 
in reciprocal space  

Spherical detector motion at a 10-150 cm radius, 
Kappa diffractometer, platform diffractometer 

Small Angle Scattering 
Section Collect SAXS patterns 2.5, 5, and 10 m sample-to-detector dist., 

0.5 m horizontal detector motion 

2D X-ray Detector  Provide 2D pixelated detection 
capability 

1024x1024 pixels, 120 frame/s,  
104 dynamic range,  
90x90 �m2 pixel size  

 
Table 3-1.  System specification for XPP instrumentation. 
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Figure 3-7.  Conceptual schematic of the XPP instrument. 
 

3.2.3. XPP X-ray Beam Parameters 
 
X-ray beam parameters such as the beam size, intensity, pulse duration, position, arrival time and 

wavelength are critical for XPP experiments.  These parameters must be either well defined or measured on 
a pulse-by-pulse basis to ensure experimental success. The X-ray optics and diagnostics described in 
Chapters 6 and 7 will be used to tailor these parameters to meet the requirements for each XPP experiment.  

 
The nominal FEL beam size at the entrance of NEH hutch 3 is expected to be 170 �m FWHM. 

Beryllium lens assemblies will be implemented in the XPP instrument to reduce the FEL spot size at the 
sample.  The lens system will be designed with a ~ 4 m working distance and will contain multiple lens 
assemblies which will allow focusing of multiple FEL harmonics. The design parameters of the lens 
assemblies are displayed in Table 3-2.  Tuning of the X-ray spot size could be achieved by altering the 
working distance of the lens assembly.  A motorized translation of 0.3 m is specified and will permit an 
order of magnitude spot size variation (see Figure 3-8).   

 

Name Energy # of Lenses Focal 
Length 

Lens-to-Sample 
distance Transmission FWHM Spot Size 

at Sample 

BCRL1 8.3 keV 5 4.1 m 3.95- 4.25 m 41% 1.5 -10 �m 

BCRL2 8.3 keV 4 5.2 m 3.95 - 4.25 m 45% 40 - 60 �m 

BCRL3 24.9 keV 45 4.1 m 3.95 - 4.25 m 31% 1.5 -10 �m 

 
Table 3-2.  Design parameters of the three beryllium compound refractive lens assemblies to be constructed 

for the XPP instrument. A variable working distance will permit some tuning of the X-ray 
spot size at the fixed sample position.    
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Figure 3-8.  FEL beam size with use of a 4 m focus beryllium compound refractive lens and corresponding 
wavefront curvature as a function of distance from the focus.  The red lines represent the 
tuning range of the lens assembly working distance.   

 
A double-crystal monochromator system, described in Section 6.1, will be installed in the XPP 

instrument. The XPP monochromator serves three purposes: reduce the spectral bandwidth of the FEL 
radiation, multiplex a portion of the FEL radiation to allow concurrent experiments to be performed, and 
produce a diagnostics beam.  As described in Section 3.2.1, no X-ray cross-correlation technique currently 
exists to measure the temporal profile or relative arrival time of the FEL radiation with femtosecond 
resolution. The development of such a technique will be critical to the long-term success of the LCLS and it 
is expected that this diagnostic will eventually be fully integrated into the XPP instrument.  The cross-
correlation diagnostic may be a destructive X-ray measurement or it may require differing X-ray beam 
parameters than those needed for a particular XPP experiment.  Thus, a separate X-ray beam may be 
required to integrate an X-ray correlation technique into the XPP instrument. This diagnostic beam can be 
realized by using thin Bragg reflectors within the XPP double-crystal monochromator (see Figure 3-9).  

 

 
 

Figure 3-9.  Large-offset and fixed-exit thin-crystal monochromator performing at 8 or 24 keV.  The offset 
is 600 mm. The blue and red ray traces represent 8 keV and 24 keV respectively.  Thin 
crystals are used to multiplex the incident beams.   
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3.2.4. Laser System 
 
Lasers: A chirped pulse amplification laser system will provide the excitation pulse to initiate time- 

resolved phenomena for the XPP instrument. This system will consist of a Ti:Sapphire oscillator, 
regenerative amplifier, multipass power amplifier, optical parametric amplifier (OPA), harmonic crystals 
and temporal pulse shaper. This configuration will permit flexibility of the wavelength, excitation level and 
temporal profile of the laser pulses used to photo-excite various materials and meets the requirements set 
forth by the XPP team leaders. Figure 3-10 displays the possible operational configurations of the XPP 
laser system.   

 
The oscillator will seed a regenerative amplifier, operating nominally at 120 Hz, where the pulse 

energy is amplified to > 2.5 mJ. The pulse duration shall be < 50 fs and the pulse-to-pulse energy stability 
shall be < 1% rms. The XPP experimentalists will thus have the option of using the fundamental radiation 
for sample excitation, or to change the frequency either through parametric amplification or harmonic 
generation, or to further amplify the fundamental in a multi-pass amplifier.   

 
The performance of the OPA will be limited by the pulse-to-pulse energy stability and spatial mode 

quality of its input pulses.  For example, an input pulse rms energy stability < 1% and M2  < 1.2 are 
specified for the TOPAS model OPA distributed by Light Conversion Ltd.[20]. The only commercially-
available Ti:Sapphire laser systems that currently meet the rms energy stability requirement are 
regenerative amplifier based systems [21][22].  However, the mode quality of these systems is specified at 
M2  < 1.5 and thus an external spatial filtering system may be required to meet the OPA specification.   

 

 
 

Figure 3-10. Operational configurations of the XPP laser system. 
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A 2nd stage multi-pass power amplifier, operating at 120 Hz, is included in the XPP laser system. This 
stage will increase the pulse energy to 20 mJ with a pulse-to-pulse energy stability < 1.5% rms. This level 
of pulse energy and stability can be achieved through use of the high-energy diode-pumped solid state 
lasers, as has been demonstrated at the LCLS gun laser [23]. The user then will have the option of exciting 
the sample with the fundamental wavelength or to convert to a harmonic. This stage will be implemented 
when high excitation pulse energy is needed.   

 
The ability to shape the temporal profile of the laser pulse in a sophisticated manner was requested by 

the XPP team in order to perform coherent control experiments. An acousto-optic pulse shaper is specified 
to allow this capability. This device will be inserted between the Ti:Sapphire oscillator and regenerative 
amplifier when pulse shaping is required.  

 
Laser Optics and Optomechanics: Ultrafast-grade optics (mirrors, waveplates, polarizers, lenses, 

windows and beamsplitters) spanning the wavelength range of 240 nm - 11 �m are required to deliver laser 
radiation to the XPP samples and to the various laser diagnostics. Automated control of a portion of the 
laser optics will allow remote user control of the intensity, position, polarization and temporal profile of the 
excitation pulse. Additionally, a 3-meter retro-reflecting delay line is specified that will allow any arbitrary 
pump-probe time delay to be achieved. The stage will provide 10 fs step precision and repeatability (1.5 
�m in the retro-reflecting geometry).   

 
Layout: It is advantageous to house the lasers in the designated laser room on the 2nd floor of the 

NEH (directly above the experimental hutches) due to the complexity of these systems. This will permit 
tuning and maintenance to be performed without interruption of X-ray operation in the experimental 
hutches as well as all-optical experimentation. A transport system that delivers the beam from the laser 
room to the experimental hutch must be designed to accommodate this configuration. A relay imaging 
system will be implemented to preserve the spatial mode quality of the beam. Since the beam must go 
through a focus in such a relay imaging system, a portion of the transport must be performed in vacuum to 
prevent the occurrence of non-linear effects that may degrade the laser characteristics. In addition, the 
compression stage of the amplifier will be replicated in the experimental hutch to allow the pulses to be 
transported uncompressed. A pointing stability feedback system, identical to the system designed for the 
LCLS gun laser transport, will be installed to mitigate the effects of laser pointing instabilities that occur 
when transporting the beam over long distances.   

 
The OPA will be housed in the experimental hutches since compressed fundamental pulses are 

required to seed the OPA. This configuration limits the transported laser wavelengths to the Ti:Sapphire 
fundamental (700-900 nm) and has the advantage that the transport optics do not need to be altered when a 
wavelength other than the fundamental is required for the experiment. However, the difficulty of pumping 
an OPA system at a distance of 10 m from the pump laser is a primary concern. An optical table assembly 
that can accommodate the entire laser system has been specified for the experimental hutch to mitigate this 
risk associated with OPA operation.   

 
Laser enclosures will be implemented throughout the optical system and will contain all of the laser 

optics and diagnostics. The enclosures will serve the purpose of reducing the risk of accidents as well as 
providing an environment for the optics and optomechanics that is shielded from air currents, acoustic 
noise, dust and unintended bumping.   

Laser Timing: The Ti:Sapphire laser oscillator, operating at a 119 MHz repetition rate, will be 
actively stabilized to the RF signal used to synchronize the accelerating components of the SLAC linac. A 
100 fs rms phase jitter between the laser pulse train and the RF, integrated from 1 Hz to 10 kHz, is desired. 
This phase jitter, along with the X-ray pulse phase jitter with respect to the RF, will determine the ultimate 
temporal resolution of the majority of the XPP experiments without the use of advanced timing techniques.   
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An electro-optic timing diagnostic will be used to improve the temporal resolution of the XPP 
instrument below the jitter limit. This diagnostic was used successfully at SPPS [12]. The details of the 
diagnostic are described in Section 7.2.5.   

 
Laser Diagnostics: Diagnostics that monitor and record the pulse temporal profile, pulse energy, and 

spectrum on a shot-by-shot basis are included in the XPP laser system. Additional diagnostics to 
characterize the spatial profile and the contrast ratio (for pulse pedestal, pre-pulses and post-pulses) are 
included as well. This suite of laser diagnostics will be critical to the operation of these laser systems and 
thus to the overall performance of the experimental station.   

 

3.2.5. Diffractometer System 
 
The XPP diffractometer system, consisting of a sample manipulator and detector mover, will be the 

primary piece of instrumentation used to acquire data for the XPP station. The diffractometer will be 
designed to operate in both the direct beam and monochromatic beam. A precision translation platform will 
move the diffractometer system between the two beamlines.   

 
Detector Motion: Most experiments performed at the XPP instrument will require the movement of an 

X-ray detector about the sample. In particular, it will be necessary to remotely move a detector along a 
spherical surface centered at the sample region. The radius of the detector sphere must be optimized on a 
per experiment basis and thus a variable radius spanning 10 cm to 1.5 m is needed. The precision and 
repeatability of this motion is set by the pixel size of the XPP detector (90 �m).   

 
Two solutions are being considered to satisfy the detector motion requirements. The first solution 

utilizes a pair of orthogonal rotation stages and a translation stage. These devices are typically integrated 
with the sample manipulation instrumentation to create a '6-circle' diffractometer (see Figure 3-11). A 
second solution that implements a robotic arm to move the detector is also under consideration. Unique 
strengths for each solution exist and will be investigated before the final technological decision is made.   

 

 
 

Figure 3-11. Conceptual image of the detector arm of the XPP diffractometer system. 
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Figure 3-12. Conceptual image of the kappa and platform difractometer configurations for the XPP 

instrument.  The kappa is on the left and the platform on the right.  The image of the kappa 
diffractometer was acquired from the ID32 surface scattering beamline website of the ESRF 
[24]. 

 
Sample Manipulation: The types of samples that will be studied with the XPP instrument include, but 

are not limited to, single crystals, organic crystals and liquids. The manipulation requirement for each type 
of sample varies dramatically. Thus, the ability to accommodate a wide variety of samples, sample 
geometries and sample environments is a primary design criterion for the sample diffractometer.   

 
Some of the studies that will be performed at the XPP instrument will involve the measurement of 

Bragg reflections from single crystal samples. Thus, precise control of the complete sample orientation in 
the  rotational degrees of freedom is required. Further constraints are placed on the sample orientation when 
the laser excitation pulse is introduced since it may be necessary to maintain a particular X-ray and/or laser 
incidence angle while accessing a region in reciprocal space. In addition to providing the rotational motions 
for sample orientation, the XPP sample manipulator will have the capability to precisely translate the 
sample along the two axes perpendicular to the incident X-ray beam. This capability is critical for 
experiments performed at high photoexcitation densities where the sample is permanently damaged by a 
single excitation pulse. When performing studies in this excitation regime the sample must be translated so 
the subsequent excitation pulse is incident upon a previously un-excited region of the sample. This 
translation must maintain the sample orientation with respect to the X-ray beam.   

 
The current XPP sample diffractometer concept employs a modular approach to meet this requirement. 

Two separate components are designed to interface onto a rotation stage: a kappa goniometer and a 
platform. Figure 3-12 displays a conceptual schematic of the two possible configurations of the XPP 
diffractometer. The configuration choice will be made based of the requirements of a particular experiment 
and will largely be determined by the accessibility of reciprocal space needed, the proximity of other 
equipment to the sample, size of the sample, and environment of the sample (vacuum, temperature, 
pressure, etc.).  

 
Small Angle Scattering Capability: The XPP instrument will have small-angle X-ray scattering 

(SAXS) capability. An alcove in the XPP hutch will permit a sample-to-detector distance of 10 meters, 
along with two discrete intermediary distances (2.5 m and 5 m).  A translation platform will be constructed 
to remotely move the detector at these locations perpendicular to the X-ray beam propagation direction. A 
large diameter vacuum beam pipe will allow scattered radiation to reach the detector without significant 
attenuation.  The entire SAXS assembly will be capable of operating in both the monochromatic and direct 
FEL beam path.  Figure 3-13 displays a conceptual image of the SAXS alcove.   
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Figure 3-13. Conceptual schematic of the small angle scattering alcove for the XPP instrument. 
 
Temperature-Controlled Sample Environment: Two separate temperature regulating devices are 

envisioned for the XPP instrument.  The first is a vacuum cryostat system.  This device will be used in 
conjunction with the platform configuration of the XPP diffractometer and will have cooling capability 
down to 20 K with a 7 W capacity. However, some restrictions will be placed upon the accessible 
reciprocal space solid angle since the cryostat will operate in a vacuum environment and windows must be 
used.  Certain experiments, in particular experiments involving organic samples, require a large reciprocal 
space access in addition to modest cooling capacity.  A cryostream will be used for this class of 
experiments with the kappa goniometer.   

 

3.2.6. XPP 2D Detector System 
 
2-Dimentional Detector System: An X-ray active matrix pixel sensor (XAMPS) is being developed 

by Brookhaven National Laboratory for the XPP instrument since a detector system with the required 
characteristics is not commercially available. It will include an array of 1024 x 1024 pixels with a pixel size 
of 90x90 �m2. To support the breadth of experiments that will be performed at the XPP station, the detector 
must have the ability to detect a single X-ray photon with high efficiency as well as measure a slight 
change in an intense Bragg reflection. To accommodate these requirements, the detector will have high 
quantum efficiency (approaching unity at 8 keV) and a 104 dynamic range per pixel.  A summary of the 
detector parameters is presented in Table 3-3.   

 
The LCLS will be a highly fluctuating source even when maturely commissioned. The successful 

execution of the experiments at the X-ray pump-probe instrument will be limited by the ability to mitigate 
these source fluctuations through diagnostics. It is therefore necessary that both the pixel array detector and 
the diagnostics operate on a pulse-by-pulse basis, since integration over the source fluctuations cannot be 
performed. Thus, the readout rate of the detector must accommodate 120 Hz operation to take advantage of 
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the full LCLS repetition rate. The expected readout rate of 1 kHz for the XAMPS detector meets this 
requirement.   

 
The XAMPS detector is a semi-monolithic device.  A pixelated high-resistivity silicon sensor, 500 μm 

thick, serves as the detection volume where incoming X-rays are converted into electrons.  The number of 
detected X-rays is deduced from the integrated charge per pixel.  A switching transistor is integrated on the 
silicon bulk in each pixel to release the charge for readout.  A separate readout ASIC contains a charge- 
sensitive amplifier with two gain settings to accommodate the large dynamic range.  The analog signals 
coming from the readout chip are multiplexed and digitized in a 12 bit ADC.  The XAMPS is read out one 
row at a time (1024 pixels), resulting in a total readout time of ~1 ms per frame.  

 
The following technical challenges will be addressed by the XPP detector development team:   
 

� Engineering the readout ASIC to have a large dynamic range while maintaining single photon 
sensitivity.   

 
� Overcoming the fabrication complexities associated with integrating a switching transistor 

into each pixel.   
 

� Sustaining a 2 Gbit/s peak data rate throughout the readout and storage process.   
 

� Engineering a data acquisition board that will merge beam diagnostics data and perform real 
time data processing.   

 

Parameter Specification 

Energy Range 4-24 keV 

Well-depth/pixel 104 

Readout Frame Rate > 120 Hz 

Quantum Efficiency > 90% at 8 keV 

Noise < 1100 electrons rms per pixel 

Pixel Size 90 �m x 90 �m 

Detector Area 1024x1024 pixels 

 
Table 3-3.  Detector specifications for the XPP instrument. 

 
Dispersive X-ray Spectrometer: A dispersive X-ray spectrometer will be constructed for time- 

resolved X-ray emission (XES) and resonant inelastic X-ray scattering (RIXS) experiments. A conceptual 
design is displayed in Figure 3-14.  This spectrometer will have an energy resolution of ~ 1 eV FWHM and 
spectral dynamic range of 50 to 100 eV, sufficient to observe the K� or the K� emission lines [25]. Current 
non-dispersive X-ray emission analyzers have collection efficiencies of better than 10-6. Given the high flux 
of the LCLS, the potential exists for measuring a full spectrum with a single pulse.   
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Figure 3-14. Schematic setup of a dispersive X-ray spectrometer for the XPP instrument.  Four arrays of 
cylindrically curved crystals sagitally focus the X-ray emission onto position sensitive 
detectors [25].  The emission spectrum is dispersed along the vertical axis of the detectors.  
The apparatus will be rotated by 90° for RIXS experiments.  
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X-ray scattering has long been used to determine atomic structures of biomolecules.  The X-ray dose 

needed to achieve a given resolution for a particular sample can be calculated.  It is easy to show that the 
dose required to image a single molecule is much larger than the dose required to completely destroy the 
molecule through radiation damage processes.  X-ray crystallographers mitigate this problem by spreading 
the damage over billions of molecules in a single crystal, greatly enhancing the diffraction signal.  Since the 
molecules are all identical and precisely aligned in the crystal, the X-ray scattering information is preserved 
and the structure can be determined.   

 
LCLS offers another way around the damage problem.  Since the FEL X-ray pulse is very intense and 

very short, it is possible in principle to deliver the required dose to a nano-scale sample and record the 
scattered X-ray information before the damage processes have time to destroy the sample.  In other words, 
an LCLS X-ray pulse could be focused onto a single molecule, which would be destroyed – but not before 
the scattered X-rays are already on their way to the detector carrying the information needed to deduce the 
image [26]. The Coherent X-ray Imaging (CXI) Instrument will offer the possibility of determining 
structures at resolution beyond the damage limit for samples which do not form crystals, including 
important classes of biological macromolecules.   

 

4.1. SCIENTIFIC PROGRAMS 
 
The unique characteristics of the photon beam provided by LCLS, such as the unprecedented peak 

brightness at hard X-ray wavelengths will present new possibilities to the field of X-ray imaging. The CXI 
instrument is designed to make optimal use of the LCLS FEL beam to allow for imaging of scientifically 
and technologically relevant nano-scale samples which cannot be imaged using currently available 
technology.   

 
Reproducible biomolecules: Only a two-dimensional diffraction pattern will be collected from a 

single biomolecule before it is destroyed by the LCLS beam. Such a two-dimensional pattern encodes 
information about a projection image of the object onto a plane parallel to the detector plane. Three-
dimensional structural information about highly-reproducible molecules such as viruses, large proteins or 
molecular complexes could be derived if a series of the molecules were delivered into the LCLS beam one 
after the other using a particle injector. Each injected molecule would have a different orientation and a full 
3D diffraction data set could be obtained from a large number of identical copies of the molecule, complex 
or virus. Atomic or near-atomic resolution structures could be obtained for difficult to crystallize 
biomolecules. One of the challenges will lie in properly classifying each diffraction pattern in order to 
orient the patterns relative to each other in three dimensions. It would greatly reduce the data collection 
time and the signal level requirements if one could produce an aligned beam of particles. This might be 
achieved by hitting the particles with a non-resonant laser in the infrared range to align the particles along 
the polarization direction of the laser [27].   

 
Small biomolecules attached to large known structures: Very small proteins, on the order of 10 nm 

or less will scatter only weakly which may lead to a signal-to-noise ratio (SNR) below what is necessary 
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for imaging. It is possible to attach such small proteins of unknown structure to larger known biomolecules 
such as large viruses. By binding each sample protein to a specific site on the large biomolecule, one could 
obtain a set of reproducible objects suitable for 3D imaging at LCLS. The large structure could act as a 
holographic reference and would be used to boost the SNR. The structure of the small protein could be 
recovered from the interference between the diffracted waves of the two objects. 

 
Nanocrystals of proteins: It is often the case that large crystals of a certain protein cannot be grown 

but a large number of very small crystals can readily be obtained. These sub-micron crystals do not scatter 
enough X-rays to yield an atomic structure using conventional protein crystallography techniques. The high 
flux of LCLS will allow these to be used for structure determination. Assuming all the nanocrystals possess 
the same crystal symmetry, a series of nanocrystals could be illuminated by LCLS X-ray pulses and the 
diffraction patterns recorded. The variations in alignment of the crystal axes from sample to sample will be 
relatively straightforward to determine from the Bragg peaks in the diffraction patterns. A full 3D set 
similar to conventional protein crystallography will be built up and standard crystallography phasing 
methods will yield the protein structure. It will be possible to inject these nanocrystals directly into the 
beam and size-select them using a differential-mobility analyzer to select a set of similar crystals. 

 
Nanoparticles: Technologically relevant nanoparticles such as quantum dots are difficult to image 

using existing X-ray sources due to their weak scattering. LCLS will make it possible to obtain two-
dimensional projections of any non-reproducible nanoparticle and three-dimensional images of 
reproducible objects. Furthermore, the LCLS beam could be attenuated to a level slightly below the damage 
threshold of an inorganic nanoparticle and a full 3D reconstruction could be obtained from a single particle 
using multi-image tomographic techniques. The large transverse coherence length of the LCLS, coupled 
with a large detector area, will allow large particles to be imaged in 3D at near-atomic resolution. 

 
Hydrated cells: Living cells are all unique at the atomic level. It will therefore not be feasible to 

obtain a full three-dimensional image of a cell at atomic resolution at LCLS since damage would occur to 
the single cell with a single exposure. However, LCLS will offer the capability to study fully hydrated cells 
beyond the damage limit in two dimensions. The cells will be injected sequentially into the X-ray beam and 
a 2D diffraction pattern will be collected from each LCLS shot. The rapid injection of the cell into vacuum 
would prevent them from drying out and they would remain fully hydrated during the measurement. The 
high peak flux of LCLS will make this measurement possible, since the cell will fly through the beam very 
quickly at speeds of up to 200m/s using the aerodynamic lens injection technology. The ability to image 
multiple similar copies in a short time will allow 2D high resolution structural information to be obtained 
about the main reproducible parts of the cell. High-resolution information will be obtained on important 
structural cellular transformations by injecting cells into the beam at different stages of a biological 
process. For example, a single cell organism being infected by a large virus could be studied by injecting 
cells directly into the LCLS beam at various times after the virus is introduced into the sample. 

 
Radiation damage studies: The LCLS source will produce hard X-ray fields of unprecedented high 

intensity. It will allow for the first time tests of radiation damage models under such extreme conditions. 
These models [28][29], are directly relevant to atomic-resolution imaging since the damage suffered during 
a pulse must be limited or the reconstruction will suffer. Objects such as viruses of known structure or well-
characterized nanoparticles will be mounted on X-ray transmissive substrates or attached to thin fibers 
produced by electrospinning [30] to minimize unwanted scatter. Single pulse diffraction patterns from a 
sample containing multiple copies of the same virus will be measured at different fluence and pulse length 
values to gain a better understanding of the damage process and determine the necessary conditions for 
single-molecule imaging. These experiments will require a pulse picker to select a single FEL pulse to 
illuminate the sample. 
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Pump-probe imaging: It will be possible with the use of an optical pump laser to image scientifically 
relevant photo-induced changes in non-crystalline samples. For example, the explosion of a single particle 
such as a virus induced by a high power optical laser beam will be measured by hitting the particle, either 
mounted on a substrate or injected into the vacuum chamber with the laser beam at different time delays 
before the FEL pulse. The laser ablation of silicon is also technologically relevant and the explosion of thin 
silicon foils will be imaged in the same way.  

 
Time-delay holography: How a biological sample explodes after interacting with the LCLS beam is 

not fully understood and will be studied using a new technique called time-delay holography [31]. In these 
experiments, a single FEL pulse will interact with the sample producing a prompt scattering pattern. Just 
beyond the sample, at a controllable distance, a mirror will be used to reflect the direct beam so it interacts 
with the sample a second time, producing a delayed scattering pattern. During the second pass, the sample 
will be undergoing a Coulomb explosion which we wish to study. The mirror will reflect the prompt 
scattering, as well as all the plasma emissions and Compton scattered photons from the first pass, although 
inefficiently. The samples will be mounted on a thin (20 nm) X-ray transmissive silicon nitride window 
attached to a silicon wafer. By using a very small window size (10-20 μm) most of the prompt scattered 
photons reflected from the mirror will be blocked by the wafer. In effect, only the back-reflected direct 
beam will come back through the window and onto the sample. One will thus measure only the delayed 
diffraction pattern from the exploding particle. For these experiments, the incident beam must first pass 
through a hole in the detector before impinging on the sample. The detector that will be used in the CXI 
instrument (shared with LCLS) will have a hole in the middle to let the damaging direct beam pass (see 
Section 4.2.5). The instrument will be designed to allow enough space for the detector assembly to be 
mounted upstream of the sample chamber to make these experiments feasible. 

 

4.2. INSTRUMENT DESCRIPTION 
 
Diffraction imaging is elegant in its experimental simplicity: a coherent X-ray beam illuminates the 

sample and the far-field diffraction pattern of the object is recorded on an area detector.  The experiments 
performed on the CXI instrument are based on this simple geometry. With the full flux of LCLS impinging 
on it, the sample gets completely destroyed a short time after the pulse. The diffraction pattern can be 
recorded before the damage occurs with suitably short pulses. This is called flash imaging and was recently 
demonstrated at low resolution using longer-wavelength (32 and 13 nm) FEL radiation [32].  Since the goal 
of these experiments is to measure the diffraction from small weakly scattering samples, it becomes 
imperative to minimize the noise. Some experiments therefore require a container-less sample delivery to 
the LCLS beam. A particle injector which sends the particles into vacuum as a focused particle beam that 
intersects the FEL beam is a vital component of the instrument.   

 

4.2.1. Coherent Imaging Technique 
 
Figure 4-1 displays the envisioned experimental geometry for three-dimensional structure 

determination using coherent diffraction imaging. The fully-coherent pulse of X-rays from LCLS 
illuminates the sample, which is smaller than the beam, producing a continuous diffraction pattern. The 
particles are injected into the FEL beam (see Section 4.2) and are then destroyed in a Coulomb explosion.  
The diffraction pattern is recorded by a pixel array detector (see Section 4.2.5), which has the high quantum 
efficiency and dynamic range required to measure simultaneously the very high intensities near the center 
and the very weak intensities at high angles.   
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Figure 4-1.  Schematic diagram of the single-particle diffraction imaging experiment at LCLS.  Copies of a 
reproducible sample are exposed to the beam one by one in random orientations. A 2D 
detector records the coherent X-ray diffraction pattern. A 3D image of the sample can be 
reconstructed from the diffraction patterns 

 
Oversampling: Each measured 2D diffraction pattern gives, within reasonable approximations, the 

square modulus of the Fourier transform of the projection of the electron density of the illuminated object 
onto a plane parallel to the detector plane. In order to retrieve the image of the object, the phases of the 
diffracted wave, which are not measured, must be recovered. To make this possible, all the necessary 
information about the object must be present in the diffraction pattern, which means all the spatial 
frequencies present in the object must be adequately sampled. The highest spatial frequency corresponds to 
the overall size of the object. Oversampling the signal relies on the knowledge of the presence of a zero 
density area around the object. With higher oversampling, the zero-density area becomes larger and this 
constrains the possible structures that can produce the measured diffraction pattern, leading to a unique 
possibility in the absence of noise for two and three dimensions [33].  

 
Phase retrieval and image reconstruction: In principle (and this has been demonstrated multiple 

times [34][35][36]), the oversampled diffraction pattern can be inverted to obtain an image using phase 
retrieval computer algorithms. These algorithms solve the phase problem by iteratively projecting from the 
image plane to the diffraction plane, imposing known constraints at each step. The constraint in the 
diffraction plane is that the calculated diffracted amplitudes match the measured amplitudes. At the image 
plane, the simplest constraint arises from the oversampling, which creates a support where the object is 
non-zero, with everything outside the support equal to zero. Many variations of the algorithms exist, 
differing in the way the constraints are imposed [38]. The algorithms converge to a unique solution in the 
absence of noise for dimensions greater than 1, except for some pathological cases in two dimensions [33]. 
In the presence of noise, a set of often similar solutions can satisfy the set of constraints. The quality of the 
solution is determined by an error metric measure and when available, using prior knowledge about the 
sample. 
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Classification, averaging and orientation: Each 2D diffraction pattern can be inverted to yield a 2D 
projection of the object (and this may provide sufficient information for some applications). Three-
dimensional imaging requires more than one view of the sample. Multiple 2D patterns with different 
orientations can be combined to create a 3D data set, which when inverted produces a full 3D image of the 
object. The 3D set will be obtained by recording the diffraction pattern from a different molecule with 
every pulse, at 120 Hz. The large number of images will then be post-processed and classified by grouping 
sufficiently similar images. Computer algorithms are being developed to identify images from similar 
orientations and average them together in order to increase the signal-to-noise ratio, which may be 
insufficient from a single shot. The storage and post-processing of a very large number of images will 
require very powerful computers and software development. The relative orientation of each set of 
averaged image will be determined from common lines between intersecting planes [37]. The phase 
retrieval for a 3D diffraction data set obtained through proper averaging of multiple images is performed in 
the same way as for two dimensions and has been demonstrated. The only difference is the longer 
computing time required to reach a solution with the larger data set. Practical algorithms exist that are very 
robust and allow ab initio reconstruction of 3D structures. 

 
Resolution: Resolution in these diffraction experiments does not depend on sample quality in the same 

way as in conventional crystallography. Though the resolution is determined by the highest scattering angle 
at which there is a measurable signal, as in the case of conventional protein crystallography, this angle is 
not determined by the sample quality. The resolution of the reconstructed image is a function of radiation 
intensity, pulse duration, wavelength, and the extent of ionization and sample movement during the 
exposure [26][28][29].  The detector must be designed to allow for an acceptable compromise between 
oversampling and resolution.   

 

4.2.2. Overall Concept Layout 
 
Figure 4-2 displays a block diagram of the CXI instrument. The main components are the pulse 

compressor, pulse picker, Kirkpatrick-Baez (KB) mirror system, X-ray diagnostics and sample chamber 
including the particle injector, detector and post diagnostic wavefront sensor. Component specifications are 
summarized in Table 4-1.  

 
The sample chamber will be flexible enough to accommodate a variety of sample supports and 

manipulators.  It will also permit pump-probe studies by providing a port for the introduction of a laser 
pump pulse.  A port for a laser alignment of particles is included.   

 
The coherent X-ray imaging instrument is simple in concept: it will focus the LCLS beam onto the 

sample and then collect the diffraction patterns.  Figure 4-3 shows a 3D drawing of the instrument concept.  
The focusing will be varied using one of two options. The first is to use three separate optical elements 
giving nominal beam focus sizes of 10, 1 and 0.1 μm. The second option is to use only the optical element 
producing a 0.1 μm focus, and to move the sample in and out of the focus to vary the beam size. The 
sample chamber will be evacuated to a pressure sufficiently low to reduce the background from the residual 
gas to a small fraction of that coming from the sample itself.  The detector distance will be adjustable to 
accommodate a range of sample dimensions and resolutions.  In addition various diagnostics including 
electron and ion time-of-flight detectors and an optical microscope will permit the observation of the results 
of the FEL-sample interaction and the subsequent Coulomb explosion.  Diagnostics for the X-ray beam will 
be provided in order to characterize the incident beam on a pulse-by-pulse basis.   
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Figure 4-2.  Block diagram of the CXI instrument.  
 
 

Item Purpose Specification 

Slits/Apertures Beam definition, 
Beam halo cleaning 

0.25 �m accuracy 
1 �m repeatability  
Resistant to beam damage 

KB mirrors Provide small beam sizes at the sample 
location 

KB 0.1 �m: Focal length, 0.4 m 
KB 1 �m: Focal length, 4 m 

Attenuators Provide variable attenuation for alignment Variable,  
up to 106  reduction 

Sample Environment 
Provide vacuum environment for reduction 
of background scatter and sample holders, 
injector 

Base pressure < 1x10-7 torr 

Electron, Ion  TOF Sample diagnostic Ions: 1 AMU resolution up to mass 100 
Electrons: resolving power 1000 

Detector Stage Move the detector 1.5 m of travel 
Distance to detector from 50 mm to 1.55 m 

Wavefront Sensor Determine the wavefront at the sample 
position 

Measure the wavefront in the far field and 
reconstruct the wavefront at the sample at 120 
Hz. 

2D Detector  Provide 2D pixelated detection capability 
760x760 pixels, 120  frame/s, dynamic range 
1000, pixel size 110x110 �m2 

 
Table 4-1.  System specification for CXI instrumentation 
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Figure 4-3.  Conceptual schematic of the CXI instrument with 3 focusing optics.   
 

4.2.3. X-ray Beam Parameters 
 
X-ray beam parameters such as the beam size, intensity, pulse duration, position and wavelength are 

critical for CXI experiments.  These parameters must be either well defined or measured on a pulse-by-
pulse basis to ensure experimental success. The X-ray optics and diagnostics described in Chapters 6 and 7 
will be used to tailor these parameters to meet the requirements for each CXI experiment.   

 
Single focusing optic: The nominal FEL beam size at the entrance of NEH hutch 5 is expected to be 

350 �m FWHM. A Kirkpatrick-Baez (KB) mirror system will be implemented in the CXI instrument to 
give a nominal 0.1 μm focus.  The beam size at the sample can be adjusted to its required size by moving 
the sample slightly away from the minimum focus.  The KB system will be designed with a ~ 0.4 m 
working distance which will provide a waist of 60 nm. The design parameters of the KB system are 
displayed in Table 4-2. 

 

Name Energy Focal Length KB-to-Sample distance FWHM Spot Size at 
Sample 

KB-0.1 8.3 keV 0.40 m 0.400 m 0.06 �m 

KB-1 8.3 keV 0.40 m 0.407 m 1.0 �m 

KB-10 8.3 keV 0.40 m 0.470 m 10 �m 

 
Table 4-2.  Design parameters of the KB system to be constructed for the CXI instrument.  A variable KB 

to sample distance will permit tuning of the X-ray spot size at the sample position.    
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Figure 4-4.  Schematic of the CXI instrument with a single focusing optic.   

 
 

 
 

Figure 4-5.  FEL beam size with use of a 0.4 m focus KB system and corresponding wavefront curvature as 
a function of distance from the focus.  The red lines represent the tuning range of the lens 
assembly working distance. (a) FWH beam size as a function of distance from the waist, (b) a 
zoom showing the theoretical 60 nm focus, (c) wavefront curvature as a function of distance 
from the waist, (d) zoom of the absolute value of the radius of curvature near the waist.   
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Multiple focusing optics: An alternative focusing approach has also been considered.  The system 
would consist of separate fixed-focal-length optics for 10, 1.0 and 0.1 micron focus sizes.  The 10 micron 
focus would be achieved with a Be lens, and two KB systems would provide 1.0 and 0.1 micron foci 
respectively.  While this concept avoids relative sample motion, the complication of several different 
optical arrangements makes this a less desirable approach. Nevertheless, it may be the necessary approach 
if the single KB mirror cannot be made with sufficiently low roughness. The roughness leads to distortions 
of the wavefront away from the focus.   
 

 
 

Figure 4-6.  MD simulation of radiation-induced Coulomb explosion of a small protein of lysozyme.  
Results shown are based on [26].  White balls: H, Gray: C, Blue: N, Red: O, Yellow: S. 
Integrated X-ray intensity: 3x1012 (12 keV) photons/100 nm diameter spot (corresponding to 
3.8x108 photons/nm2, or 3.8x106 photons/Å2 on the sample) in all cases. (a) Protein exposed 
to a 2 fs FWHM X-ray pulse, and disintegration followed in time. The atomic positions in the 
first two structures (before and after the pulse) are practically identical at this pulse length due 
to an inertial delay in the explosion. (b) Lysozyme exposed to the same number of photons as 
in (a) but the pulse FWHM is now 10 fs. The images show the structure at the beginning, in 
the middle and near the end of the X-ray pulse. (c) Behavior of the protein during a 50 fs 
FWHM X-ray pulse. It is also apparent from the figure that during the Coulomb explosion, 
hydrogen ions and highly ionized sulphurs are the first to escape the immediate vicinity of the 
protein (at 12 keV, the photoelectric cross section for sulphur is about fifty times larger than 
that of carbon).   
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Pulse compressor: Beam optics will be provided to compress the LCLS pulse.  The baseline LCLS 
pulse will have duration of ~ 100 fs with nominally a few x 1012 photons per pulse.  While this will provide 
an ideal beam for initial studies, as the technique of coherent X-ray imaging matures there will be a desire 
to produce shorter pulses containing the same per-pulse energy.  The need for shorter pulses is shown in 
Figure 4-6, where MD simulations of the response of a lysozyme protein to pulses containing 3x1012 
photons and durations of 2, 10 and 50 fs respectively are shown.  It is clear that by 50 fs significant 
distortion of the molecule has occurred during the pulse [26]. As with optical lasers, if one can chirp the 
LCLS beam then in principle one can optically compress it.  The optical scheme to compress the pulse is 
shown in Figure 4-7.  Here the intrinsic dispersive nature of Laue diffraction is used to produce a 
wavelength-dependent path length difference.  With proper conditions, one can achieve an order of 
magnitude reduction in pulse length with, in a best case, a 2-4 fold loss of intensity depending on the 
performance of the multilayers.  The specifics for the LCLS are given in Table 4-3. The parameters are 
those shown in the compressor schematic.  The LUSI project will provide the precision rotation stages and 
translations required as well as the multilayers.   

 
Pulse picker: One additional beam-conditioning component will be provided.  The coherent imaging 

station will be used to investigate a wide variety of sample ranging from injected single bio-molecules to 
arrays of bio-molecules and other nanoscale objects.  When the background scattering is low enough these 
will be placed on substrates for support.  Under these circumstances, with the LCLS operating at 120 Hz, it 
will be required to isolate a single LCLS pulse, translate the substrate, and illuminate another object.  In 
order not to require changes in the machine operating frequency a ‘pulse picker’ will be provided that can 
isolate a single LCLS pulse or provide a reduced repetition rate.  This can easily be accomplished with 
rotating discs that are phase locked to the linac and a simple shutter that can close in a time ~ 0.5 s once the 
LCLS rate has been reduced to 1 Hz.  Rotating choppers operating at much higher speeds are in routine 
operation at ESRF and elsewhere. 

 

 
 

Figure 4-7.  A Laue pulse compressor based on ‘sliced’ multilayers. 
 
 

� 
(nm) 

d 
(nm) �B b Sin � H 

(mm) 
��/� 
(%) 

0.15 2.0 2.1º +1 0.03 2600 0.5% 

 
Table 4-3.  Parameters for a Laue case pulse compressor for the LCLS. 



C O N C E P T U A L  D E S I G N  R E P O R T  
______________________________________________________________________________________ 

C O H E R E N T  X - R A Y  I M A G I N G   4-11 

4.2.4. Sample Environment 

4.2.4.1. Vacuum Requirements 
 
The background signal level will be an important concern in these imaging experiments. Since the size 

of a single bio-molecule is so small there must be very little else in the beam to cause scattering that arrives 
at the detector. When imaging single molecules, the sample cannot be held on a substrate, since the 
scattering from the atoms of the substrate will overwhelm the signal of the molecule itself.  For similar 
reasons, one must minimize the number of scattering atoms along the entire beam path. Therefore, the 
sample (and indeed the entire optics and experimental apparatus) must be in high vacuum to reduce air 
scatter as much as possible.  The required background pressure can be estimated simply.  Assume one is 
imaging a bio-molecule of weight ~ 500 kDa, typical of the smallest molecules of interest at LCLS.  
Suppose there are sufficient scatter guards to eliminate the background noise coming from everywhere 
along the beam path except for within 10 cm of the sample.  Then for a 1 �m2 beam traversing a 10 cm path 
just in front of the molecule, a pressure of 1x10-7 torr will contribute a background signal of ~ 1% of the 
scattering from the sample. This sets an upper limit on the pressure requirements inside the sample 
chamber. 

 

4.2.4.2. Particle Injection 
 
The apparatus to extract nanoscale biomaterials from solution and inject them into vacuum to interact 

with a focused X-ray beam is a key and enabling technology for biological imaging at free-electron lasers. 
For LCLS, an injection process that can bring a purified stream of biomolecules, nanoparticles, viruses and 
cells into vacuum in a known orientation to interact with the highly focused pulses for single-particle 
imaging is required. Injector development has been funded at Lawrence Livermore National Laboratory 
(LLNL) through a Laboratory Directed Research and Development Strategic Initiative (LDRD-SI) project 
titled “Biological Imaging with 4th Generation Light Sources”. Major milestones achieved during this 
project include the first experimental demonstration of the concept of diffraction imaging of free (injected) 
particles using individual femtosecond-length pulses from the free electron laser in Hamburg (FLASH).   

 
A schematic of the container-less or substrate-free sample delivery approach designed to maximize 

‘first-results’ potential at LCLS is shown in Figure 4-8.  A continuously refreshed beam of electrosprayed 
biomolecules, nanoparticles, viruses and cells is created through a differentially pumped aerodynamic 
focusing interface. The beam, ca. 250 �m in diameter, consists of the electrosprayed particles positioned 
randomly in space and time. Particles are only imaged during coincidental overlap of the FEL pulse, with 
particles in the interaction region. Samples can be changed at atmospheric pressure, contributing to the ease 
of operation and adaptability of the technology. This particle injection approach has proven to be a 
resounding success during two experimental campaigns at FLASH using 13.5 nm light.  For example, 
during a shift in March 2007 the injector was operated continuously for 18.7 hours, performing 26 sample 
changes with 14 different samples (Figure 4-9). The CCD collected images continuously for almost all 18.7 
hours and 11.6 % of images contained particle scattering information (1873 out of 16639 images), giving 
an average hit rate of 0.05 particles/s (including all sample change down time). Injected particles from 
which coherent diffraction patterns have been recorded and images have been reconstructed include 
megadalton DNA complexes in ~150 nm sucrose droplets, 75-700 nm diameter spherical nanoparticles and 
intact marine microorganisms (~1�m x 700 nm). This data set demonstrates the adaptability, stability and 
data richness of the particle injection experiment. Most importantly, it confirmed estimates of the hit rates 
achievable.    
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Figure 4-8.  Schematics of the Particle Injector for container-less sample delivery to LCLS.  The 
differentially pumped interface is equipped with aerodynamic focusing. Aerosol produced by 
charge-reduced electrospray sampled at the inlet is focused into a narrow particle beam at 
entry to the FEL high vacuum. The entire system translates out-of vacuum to steer the particle 
beam to the FEL focus.   

 
LCLS bioimaging requires operation in free-fire mode with this injection strategy because the FEL 

cannot be triggered to coincide with random particle arrival. To compensate, experimental injection 
parameters must be optimized so that the hit rate with the FEL beam is maximized. The most easily 
controlled parameters independent of the FEL are the aerosol concentration and the inlet transmission 
efficiency, which must be maximized and the particle beam transverse area, which must be minimized. 
Advanced diagnostics have been developed at LLNL that, coupled with standard particle samples, enable 
characterization of the performance of the injection system without FEL (i.e., at LLNL). The injector is 
designed to use spherical nanoparticles as a set of standards that allow the injector to be tuned for specific 
particle sizes, i.e. for viruses vs. cells. Accurate measurements of the hit rates expected for a sample can be 
made off-line of the LCLS with a pulsed Nd:YAG laser and a time-of-flight mass spectrometer.   

 
The injection system for LCLS will have several key upgrades to improve performance over the 

current injector to meet the stringent standards required for LCLS operation and to ensure single particle 
imaging ‘first results’. Efficiency gains will be achieved in the inlet transmission and aerodynamic focusing 
design. Reduced beam divergence will be achieved by closer proximity of the injector nozzle to the 
interaction region, decreasing the particle beam diameter. Coupling these efficiency gains with the use of 
microfabricated multiplexed electrospray nozzles or droplet dispensers and highly pre-concentrated 
samples to increase the aerosol concentration sampled into the injector will increase the hit rate by orders of 
magnitude for the ‘free-fire’ mode of operation. Furthermore, the mechanical interface to align the injected 
particle beam to the FEL beam is modular in design and can also accommodate a Rayleigh droplet source 
injector designed in collaboration between LLNL and Arizona State University (ASU). This injector 
operates with in-vacuum droplet dispensing technology that creates equally spaced submicrometer-sized 
droplets that could be timed with the FEL pulses.   

 
Once particles are imaged, it is important to understand the effects of transfer of the biomolecule, 

virus, or cell on activity or viability. To address this problem, the injector is designed to have a collection 
or ‘soft landing’ module after the interaction region to facilitate off-line characterization of injected 
biomaterials.   
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Figure 4-9.  Experimental measurement and analysis of coherent X-ray diffraction of injected particles. (A) 
A schematic of the diffraction camera for FLASH in particle injection mode (note at LCLS 
the detector will be on the FEL axis). (B) Example images of spherical nanoparticles and 
complex biological samples such as single cells and milk droplets. (C) Data stream from a 
particle injection shift in March 2007 at FLASH. (D) Diffraction pattern collected during 
injection of megadalton scaffolded DNA complexes with a tamper of sucrose. (E) Time-of-
flight mass spectrometer detected ions specific to this type of particle. (F) The image 
reconstruction showed that two particles were irradiated simultaneously by a single FLASH 
pulse. 

 
Tamper layers: The particle injector has been designed to accommodate a key question associated 

with single particle imaging: Is the molecular structure preserved as it is delivered from solution into 
sprayed drops, which are then introduced into vacuum?  This question is being examined at LLNL through 
molecular dynamics simulations. These simulations also revealed that the presence of a tamper layer 
around the molecule, be it water or any other material can slow the damage to the molecule, allowing the 
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use of longer pulses. The charge-reduced electrospray of biomolecules allows for in-situ synthesis of 
nanoscale tampers through control of solute concentration in the starting solution.   

 
Overall, the particle injector is designed to be a highly adaptable and modular system capable of highly 

efficient transfer of biomolecules, nanoparticles, viruses and cells to the interaction region of the FEL. The 
success of this particle injection approach at FLASH has provided a window into the potential power of 
LCLS imaging of free nanoscale biomaterials in the future. LUSI will provide, through a contract with 
LLNL, the particle injector for the CXI instrument.   

 

4.2.4.3. Laser Alignment of Particles 
 
The classification of the 105 or more diffraction patterns may prove difficult due to the low signal-to-

noise ratio at the high resolution. This task could be made significantly easier and the single shot intensity 
requirements can be reduced by injecting pre-aligned particles in the LCLS beam. This could be achieved 
by hitting the particles with a short pulse from a non-resonant laser a short time before they interact with 
the FEL beam. The planned experiments do not require pre-alignment but would be greatly simplified by it. 
A line of sight to the particle stream will be made available for a future addition of an alignment laser to the 
system.  

 

4.2.4.4. Fixed Target Samples 
 
The initial experiments to be performed on the CXI instruments will be on fixed targets rather than 

injected particles for simplicity during the commissioning phase. Beyond these initial tests, many other 
samples will be better suited to fixed targets due to a limited sample size for example. A three-axis 
translation stage will allow the positioning of individual samples mounted on a large holder into the FEL 
beam for two-dimensional imaging. The samples will also be moved along the FEL beam to vary the focal 
size to study X-ray fluence dependence on the damage process for example.  

 

4.2.4.5. Cryo Goniometer 
 
Electron microscope goniometers could be useful for studies where a controlled sample rotation is 

necessary, e.g. for coherent diffraction experiments on nano-crystals, intact cells and cell organelles, and 
other non-reproducible samples using the unfocused, coherent beam of the LCLS. For example, cryo-
electron -microscopy (cryo-EM) performs structural studies on hydrated samples at low temperatures in a 
high vacuum environment. Existing cryo-EM equipment can be adopted for similar studies in an X-ray 
beam. Sample molecules and particles may be embedded in a thin layer of vitreous ice of a few hundred Å 
in thickness.   Such a technique will require good pointing stability from the LCLS, with minimal pulse-to-
pulse jitter. If this can be achieved, the complete repertoire of methods used in cryo-EM will become 
available for X-ray experiments. Rotating the sample will be required for 3D imaging of non-reproducible 
samples, though it will not allow measurements beyond the damage limit and would be most appropriate 
for radiation-resistant inorganic samples. Figure 4-10 shows a schematic diagram of a JEOL three-axis 
goniometer and sample holder. All motors, encoders, gears and switches are outside the vacuum. The 
horizontal drive provides motion along the X-axis. The main drive provides motion along the Y- and Z-axis 
and rotation around the X-axis. The samples can be maintained at liquid nitrogen temperatures to reduce 
radiation damage and can be easily changed without breaking the vacuum system. An optical microscope 
with a long focal length will be used to align the samples and position the rotation axis to the LCLS beam.  
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Figure 4-10.  Engineering concept of the Cryo-EM goniometer stage for the CXI instrument. 

 

4.2.5. Detector Considerations 
 
The diffraction pattern will be recorded on a pixellated detector, shared with LCLS, subtending a solid 

angle dependent on the desired resolution with a hole in the middle to avoid the direct beam. There must be 
sufficient pixels in the detector to oversample the diffraction pattern, which depends on the sample size and 
desired resolution, as described below.  The scattering from the sample covers a large dynamic range: it is 
strong very close to the central core, and at high angles there will be much less than one photon per pixel, 
on average.  Since the technique relies upon classifying and averaging a large number of patterns, the read 
noise must be considerably less than the photon count per pixel averaged over these patterns.  Estimates of 
the noise level and dynamic range are given below, after first listing the requirements of pixel count and 
sampling. For larger structures, e.g., virus particles, and single cells, a finer sampling will be needed than 
for smaller objects.  

 
The detector size should not be larger than approximately 100 mm x 100 mm, in order to reduce the 

beam path from sample to detector. At better vacuum levels, this distance could be increased without 
increasing the background. Other desired parameters are a read-out speed matching the pulse rate of the 
LCLS and an overall dynamic range on the order of 103. Diffraction data may be supplemented by a lower-
resolution image of the sample obtained with a wave-front sensor as it could prove valuable in enhancing 
the robustness of the oversampling phasing algorithms by providing information about the missing central 
part of the data.   

 
The pixel requirements simply depend on the number of resolution elements to sample an object of a 

given size at a given resolution, as described in [37]. To achieve a resolution fmax = 1/d requires a maximum 
scattering angle 2� given by sin � = � fmax/2.  For an object of finite extent of width D, its Fourier transform 
is band-limited.  The Nyquist sampling rate of the transform is 1/D in each dimension.  To measure this 
transform to a resolution 1/d, in one dimension, requires samples from -1/d to +1/d or 2D/d samples.  In 
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real space this corresponds to samples at intervals �x = d/2, which is the largest sufficient interval to 
measure periods larger than d.  The detector measures the diffraction intensities, which are the modulus 
squared of the molecular transform, or equivalently, the Fourier transform of the object’s autocorrelation 
function.  For an object of extent D the extent of its autocorrelation is 2D, which means that the diffraction 
intensities are band-limited with a Nyquist rate of 1/(2D).  Note that sampling at a higher rate than 1/(2D) 
does not add any information to the measurement, but may improve the signal to noise ratio of the 
measurement.  However, pixellated detectors do not sample at points but integrate over the active area of 
the pixels.  This corresponds to a Modulation Transfer Function (MTF) that may decrease to zero at spatial 
frequencies (at the detector) of period 2p, where p is the pixel width.  The effect of the MTF is to apply an 
envelope to the reconstructed real-space image, which should be no less than 0.7 at the largest radial extent 
of the object.  Thus, the detector’s MTF influences the required pixel count.  The number of pixels along 
the width of the detector is given by N = 2 D s / d, where s is a sampling ratio per dimension (relative to the 
molecular transform Nyquist rate), with s = 2 in the case of minimum required sampling (for which the 0.7 
MTF level should occur for pixel frequencies no lower than 1/(4 p)).   

 
Based on these considerations, the LCLS detector with 760 pixels placed 84 mm from the sample can 

provide a resolution of 0.3 nm for an object with a diameter of 57 nm with the minimum oversampling of 2.  
This detector does not have sufficient pixels to image larger objects at the same resolution.  For a 1 micron 
object, moving the detector back to 1450 mm from the sample gives 5.2 nm resolution, again with an 
oversampling of 2.  In the experimental chamber for imaging translation will be provided to cover the 
sample to detector distance illustrated here.  Since the detector is tiled, as the method of lensless imaging 
matures additional tiles can be added  as needed.   

 
Finally, a central hole in the detector will be required.  This will permit the central beam to pass 

through the pixel detector, and expands as a function of distance from the beam waist until it reaches 
sufficient dimensions that it can be analyzed by a wavefront sensor.  Since the detector sensor requires 
guard rings, the physical ‘hole’ must be smaller than the ‘dead region’ in the 760x760 pixel detector.  
Image reconstruction can be achieved even with considerable missing data due to this dead region in the 
middle of the detector.  However, the larger this region, the larger the uncertainty of various components of 
the image, and the less quantitative the image becomes.  The size of the hole will therefore be optimized so 
that the downstream wavefront sensor detector will also capture the scattered beam in the nearly forward 
direction and will be optimized based on simulations to give the most robust constraints for the 
reconstruction of the observed scattering patterns.   

 
We estimate the maximum requirement for the number of pixels is N = 2000, which corresponds to a 

particle size of 100 nm at a resolution of 0.3 nm and a sampling ratio of s = 3, or a particle size of 200 nm 
at the same resolution and a sampling ratio of s = 1.5.  The larger sampling would be required if the 
detector MTF at 1/(2 p) were about 50%.  These are likely parameters for imaging of nanoparticles, and for 
the imaging of arrays of biological particles.  For the cow-pea mosaic virus (CPMV) test object described 
below, which has D = 32 nm, we require N = 450 pixels for s = 2 and a resolution of 1/(0.3 nm).  Thus the 
LCLS shared detector with N = 760 pixels will be more than sufficient for early studies.  This reduced pixel 
count will be sufficient for most small biological samples, and a larger pixel count detector will be needed 
for larger objects (Figure 4-11).  
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Figure 4-11.  Planar section through the center of the molecular transform of a small protein molecule 
lysozyme and of a larger virus capsid at similar maximal resolutions.  The lysozyme is shown 
on the left and the capsid (tomato bushy stunt virus) on the right.  The level of detail is 
significantly different in the two pictures, and detectors should be able to resolve details in the 
patterns of even larger objects than a virus particle.   
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Coherent X-rays are particularly well suited for studying disordered system dynamics on nanometer 

length scales, using X-ray Photon Correlation Spectroscopy (XPCS) [39].  XPCS measures the temporal 
fluctuations in speckle patterns produced when coherent light is scattered by a disordered system. Figure 
5-1 shows a speckle pattern taken from Vycor porous glass [40] .  XPCS is complementary to Dynamic 
Light Scattering (DLS) or Photon Correlation Spectroscopy (PCS) with visible coherent light, techniques 
that probe slow dynamics (� < 106 Hz) but can only access the long wavelength regime (Q < 4·10-3 Å-1).   
Neutron-based techniques (inelastic, quasi-elastic neutron scattering and neutron spin-echo) and Inelastic 
X-ray Scattering (IXS) can access the same Q range as XPCS, but these techniques only probe the dynamic 
properties of matter at high frequencies (from typically 108 Hz to about 1014 Hz) [41].  The peak coherent 
flux of the LCLS FEL radiation will be 9 orders of magnitude larger than 3rd generation synchrotron light 
sources and will allow, for the first time, the studies of dynamics up to about 1013 Hz at large Q.  This is 
illustrated in Figure 5-2, which displays the frequency-wavevector space covered by a selection of relevant 
methods.  There is a wide variety of problems to be addressed [44] and some prominent examples are 
summarized in the proposed experimental program described below.   

 
 

 
 

Figure 5-1.  Speckle pattern measured at 8 keV of a porous silica static sample of Vycor.  The pattern 
presents a correlation ring located at Q = 0.023 Å-1.[40].  
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Figure 5-2.  Frequency-Wavevector space covered by different experimental techniques for studying 
dynamics of condensed matter systems. 

 

5.1. SCIENTIFIC PROGRAMS 
 
Coherence properties of hard X-rays:  Coherence is one of the most prominent features of the novel 

radiation produced by the LCLS.  A comprehensive understanding of the X-ray laser coherence properties 
is not only of fundamental interest but a necessity for properly interpreting coherence-based experiments 
such as XPCS.  The characterization of the coherence properties of a source in terms of correlation 
functions and photon statistics is theoretically well developed and experimentally established by the optical 
laser community [45] and was successfully used for characterizing 3rd generation sources XPCS 
instruments [46].  An experimental program is proposed with the goal of studying first- and higher-order 
correlation functions, which will allow one to not only determine the spatial and temporal coherence 
parameters (i.e., the longitudinal and transverse coherence lengths as well as the coherent flux) but also will 
provide insight into the mode structure, photon statistics (bunching/anti-bunching) and possible non-
Gaussian properties of the source.   

 
Phase Transition Dynamics: Atomic-scale fluctuations occur at equilibrium near many phase 

transitions. These fluctuations are the basis for the new phases that form when the phase transition point is 
crossed, e.g. by changing temperature or field. XPCS is an ideal tool for observing the equilibrium 
dynamics of these fluctuations, and understanding the mechanisms that control microstructure formation in 
materials. The diffusionless transitions in magnetic, ferroelectric, and ferroelastic materials exhibit time 
scales spanning from sub-picosecond to many seconds in the vicinity of the transition point. For example, 
in lead-niobate-based ferroelectrics the time scale of dielectric response has been found to change 
dramatically (from picoseconds to milliseconds) in a 65 K range near room temperature [47]. Nanoscale 
inhomogeneities in polarization, composition, and strain known as polar nanodomains have been observed 
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in these systems using diffuse X-ray scattering [48] and simulation [49], and are thought to be responsible 
for this glass-like "relaxor" behavior. XPCS studies of polar nanodomain dynamics will allow us to 
understand the nature of the interactions in this complex oxide system.   

 
Dynamics of Glassy Materials:  Many liquids, when rapidly cooled below their freezing points, form 

meta-stable glassy or amorphous phases.  This applies for a wide variety of materials including metallic 
alloys, oxides such as silica, polymeric materials, and many others (e.g. colloidal dispersions for which the 
volume fraction is the analogous of the inverse temperature driving the phase transition).  In general, glassy 
materials are among the least understood materials at a fundamental level.  Conventional equilibrium 
statistical mechanics does not predict the existence of the amorphous state, whereas it can explain most 
other states of matter, even quite exotic ones like superconductivity and superfluidity.  Understanding 
visco-elastic effects in glassy materials is thus an important topic of fundamental research.   

 
Surface XPCS: Surface XPCS experiments at 3rd generation storage-ring sources have been performed 

successfully in the past, and surface dynamics have been investigated in a variety of systems, such as 
membranes, polymer films, and liquids [42].  Surface XPCS in combination with the X-ray standing wave 
technique allows the study of fluctuations of buried interfaces as well.  However, surface dynamics at the 
nanometer length scale is not accessible today due to insufficient coherent photon flux.  Here the LCLS 
will provide exciting new possibilities.   

 
Non-Equilibrium Dynamics: When a disordered homogeneous material is rapidly brought to a new 

set of conditions, corresponding to the coexistence of equilibrium phases, a spatial pattern of domains of 
the phases develops.  A change of conditions can be accomplished by a rapid quench from high to low 
temperature, below the miscibility gap.  The result of such a quench is the creation of a microstructure of 
interconnecting domains. These domains grow in order to minimize the areas of the domain walls that 
separate the phases.  Out-of-equilibrium behavior has been observed in soft condensed matter glassy 
systems as well (i.e. attractive and repulsive colloidal glasses), where the dynamics are slowed down as a 
function of time and are described as aging. XPCS is ideal for studying these non-equilibrium systems 
where the dynamic behavior needs to be probed on all length scales simultaneously.   

 

5.2. INSTRUMENT DESCRIPTION 

5.2.1. XPCS Technique 

When coherent light is illuminating a disordered system the instantaneous far-field scattering produces 
a random diffraction or speckle pattern, as shown in Figure 5-1. These ‘‘speckle’’ patterns are related to the 
exact spatial arrangement of the scatterers. If the spatial arrangement of the scatterers changes with time, as 
is the case for colloidal particles dispersed in a fluid phase and undergoing Brownian motion, one will 
observe that the corresponding speckle patterns also changes and evolves in time (as can be seen online in 
[50]). A characterization of the temporal intensity fluctuations at a given wavevector within the speckle 
pattern can thus reveal information on the underlying dynamics of the system. In a XPCS experiment the 
time-resolved speckle pattern is measured with a 2-dimensional detector with pixel sizes roughly equal to 
the size of a single speckle in the far-field scattering region of the sample.   

 
The shortest time scale probed by this technique is set by the time structure of the X-ray pulses, in this 

case, the width of the X-ray bunches, which is on the order of 230 fs with a repetition rate of 120 Hz.  With 
the proposed XCS instrument, there will be three different types of measurement techniques (i.e. 
sequential, split and delay and pump-probe) designed to cover time scales from 103 seconds down to 10-12 
seconds.   
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Sequential technique (for time scales from 10-2 to 103 seconds):  The shortest time scale of this 
technique will be limited the LCLS repetition rate at 120 Hz.  Important phenomena of microscopic system 
dynamics can occur on relatively long time scales, e.g. longer than 10-1 s.  This means that it will be 
possible to employ the very high time-averaged coherent X-ray flux from the LCLS beam, averaged over 
the 120 Hz repetition rate, to investigate the dynamics using 2D-XPCS data collection and analysis 
techniques that are similar to those used now at 3rd generation sources.  Such an experiment would consist 
of collecting a time-resolved sequence of speckle patterns on an area detector as shown in Figure 5-3. From 
an analysis of these sequences, correlation times from a few inter-pulse periods up to many minutes could 
be measured.  The advantage of the LCLS pulses will be in higher signal rates than currently available, 
which will allow probing dynamics at much larger wavevectors than currently available.   

Split-Delay (for time scales from 10-12 to 10-8 seconds):  The short pulse duration of the LCLS FEL 
radiation (230 fs or less) will allow the extension of XPCS studies to much faster time scales than currently 
possible.  For example, to understand the dynamics in glass-forming systems down to the nanoscale, it will 
be important to carry out studies spanning a very large range of time scales (10-12 to 103 s) in order to 
observe the evolution of the dynamics from liquid to glassy state as the temperature is lowered.  In order to 
probe time scales between 10-12 and 10-8 s, a split-delay technique shown schematically in Figure 5-4 will 
be used, taking advantage of the peak brilliance of the LCLS beam.   

 
The concept is to split each X-ray pulse into two equal-intensity pulses separated in time, but 

propagating along the same path.  The scattering from the two pulses will then be collected during the same 
exposure of an area detector.  If the sample is static ( i.e. does not present any dynamics on the time scale of 
the delay between pulses), the contrast in the summed speckle pattern will be the same as that from a single 
pulse.  If the sample evolves on this time scale, then the summed speckle pattern will have lower contrast.  
By performing contrast analysis of a set of such patterns, each for a different time delay, the correlation 
time 	C of the system can be measured on time scales down to the pulse duration.  A pulse splitter with a 
path length difference variable from 3x10-6 to 3 m would give delay times from about 10-14 to 10-8 seconds.   
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Figure 5-3.  Illustration of the XPCS sequential technique.  A speckle pattern is measured for each 

incoming pulse at a 120 Hz repetition rate.  The intensity autocorrelation function for each Q 
is then calculated from which a characteristic time 	C can be obtained.   
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Figure 5-4.  Illustration of XPCS split-delay technique. 
 
Pump-probe technique: The XPCS pump-probe technique compares two speckle patterns: one taken 

before exposing the sample to a pump pulse, and a second pattern taken a time interval �t after the pump 
pulse. The pump sources for reactions and transformations may involve optical lasers, the LCLS pulses 
themselves, a pulsed Terahertz source, pulsed electric and magnetic fields, shock waves, etc. Time scales 
between 100 fs and 200 ns or longer can be accessed with this technique, allowing the determination of the 
time scales for magnetization processes, phase transitions in ferroelectrics, surface dynamics, etc. In 
principle one could also combine the pump pulse with the split-pulse technique described above.  

 

5.2.2. Overall Concept Layout 
 
The XCS instrument will be designed to perform the XPCS measurements described above.  It will 

have the necessary X-ray optics to deliver the LCLS X-ray beam to the experimental area in a manner that 
preserves the coherence of the beam by having as few optical elements as possible.  It includes a large-
offset monochromator, beam transport, electrical, and vacuum systems that will be installed in the 200 m 
transport tunnel connecting the NEH and the FEH.  It will have a 2D detector compatible with the 
repetition rate of the LCLS beam at a maximum rate of 120 Hz.  A diffractometer, local optics and a 
specific detector stages will be provided.  

 
To enhance the instrument, additional equipment will be provided by the XCS collaborative team, 

including the split-delay optical elements (SLAC/DESY MoU).   
 
System Specifications:  The specifications for the major components of this instrument are based on 

the requirements pertinent to the XPCS experimental measurement technique developed and refined by the 
scientific team, as presented in Table 5-1.   
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Figure 5-5.  Block diagram of the XCS instrument. 
 

 

Item Purpose Specification 

Large Offset Monochromator Deflecting beam to XCS endstations 
and provide monochromatic beam 

Non-monolithic channel-cut crystals, 600 mm offset, 
0.04 arcsec in �
 energy tunability (6 - 25 keV) 

Be Focusing Lenses Provide focusing at sample while 
preserving coherence Small beam size at the focus (< 10 �m) 

Slits/Apertures Beam definition,                        
Beam halo cleaning 

0.25 �m accuracy,                                                       
1 �m repeatability 

Attenuators Provide variable attenuation for 
alignment 

Variable,                                                                   
up to 106  reduction 

X-ray Diffractometer Orient the sample  

Wide Angle                      
Detector Stage 

Move the detector in reciprocal 
space 

7 m sample detector distance up to 2� = 60° in  
diffraction geometry 

Small Angle                     
Detector Stage 

Move the detector in reciprocal 
space 

Large sample detector distance (i.e. up to 20 m) 
enabling high resolution speckle observation in the 
forward direction 

2D Detector from BNL by MOU Provide 2D pixelated detection 
capability 

1024 x1024 pixels, 120 Hz frame/s, dynamic range 
1000, single-photon sensitivity, pixel size 35x35 �m2 

 
Table 5-1.  Specifications of XCS Instrument Components. 
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5.2.3. X-ray Optics 
 
Offset Double-crystal Monochromator (ODCM): The current XCS design for the large-offset 

monochromator is similar to that for the X-ray pump-probe instrument (XPP). It will be located at the 
beginning of the transport tunnel delivering the beam to the FEH. The concept is based on a horizontal 
scattering geometry using two Bragg thin crystals. The large 600 mm horizontal offset allows sufficient 
space to position the XCS endstation diffractometer without interfering with the vacuum beam transport 
systems delivering the beam to the CXI endstation as presented in Figure 5-6. 

 
The first thin crystal transmits a large fraction of the LCLS beam to the next station while selecting a 

monochromatic fraction of the spectrum, thus permitting parallel experiments to be performed at different 
experimental stations.  The transmitted part of the beam through the second thin crystal can be used for 
diagnostics, providing reference information at the origin of the path delivering X-ray photons to the XCS 
station. The energy tunability requirement (6 - 25 keV, allowing access to the entire LCLS spectrum up to 
the 3rd harmonic), fixed large exit, as well as the bandpass requirements for increasing the longitudinal 
coherence length (i.e. 	L = �(�/��) as indicated in Table 5-2, favor a monochromator design with multi-
crystals capabilities. (The possibility of splitting spatially the beam by inserting a thick crystal half way in 
the beam will be as well investigated.) The details of the design proposed for the monochromator are 
presented in Section 6.1. 

 

 
 

Figure 5-6.  Large-offset fixed-exit monochromator, located at the beginning of the transport tunnel. The 
blue and red dashed lines show the monochromatic X-ray beam at 8 and 24 keV respectively.   

 
Coherence Length 	L [�m] 

Monochromator Crystal ��/� 
� = 1.5 Å ��= 0.5 Å 

Si(111) 1.4x10-4 1 0.3 

Si(220) 6.1x10-5 2.45 0.8 

C*(111) 5.9x10-5 2.54 0.9 

C*(220) 2.3x10-5 6.5 2.2 

 
Table 5-2.  Longitudinal coherence length for two wavelengths of 0.5 and 1.5 Å for a selection of silicon 

and diamond monochromator crystals.   These two cases correspond to the undulator 1st and 
3rd harmonic of the LCLS x-ray spectrum.   
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Figure 5-7.  Large-offset and fixed-exit monochromator for Si(111) thin crystals performing at 8 or 24 keV.  
The offset is 600 mm, and the blue and red dashed ray tracing represent 8 keV and 24 keV 
respectively.  The first thin crystal allows the selection of a specific energy while transmitting 
a portion of the beam to the next endstation (CXI). The second thin crystal allows the 
transmitted beam to be used as a diagnostic.   

 
Split and Delay Line: Two pulses of approximately equal intensity and a defined time delay in 

between them are needed to probe fast dynamics (i.e., for characteristic times ranging from 10-12 up to 10-8 
seconds). An incoming pulse of LCLS FEL radiation will be split into two pulses by a thin Bragg or Laue 
reflector. Additional Bragg reflectors will be used to construct independent optical paths for the two pulses. 
The path will be independently varied in a controlled way between typically 30 �m and 3 m, thus giving 
delays of 100 fs up to 3 ns.  A simple geometry for the pulse splitter involves a fixed delay leg and a 
variable one (in order to allow the delay to be tuned through zero delay), with two pairs of crystals in 
symmetric Bragg geometry on each leg as shown schematically in Figure 5-8.   

 

 
 

Figure 5-8.  Schematic diagram of the Split-Delay unit. The incoming LCLS XFEL pulse is split in two 
pulses (red and blue), each following a path of different length before getting recombined by 
the “adder” thin crystal into a single beam with the requested time-structure.   
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The two “blue” crystals will be sufficiently thin to transmit the undiffracted beam and act as a 
“Splitter” and “Adder”, respectively. The first one performs the splitting role and separates the incoming 
FEL pulse in two different pulses of equal intensity. The blue path would be the fixed path. The pulse 
traveling on the red path would have its path length tuned relative to the blue one by translating the two 
crystals located at the top of the unit. After the second thin crystal, the “Adder”, the two delayed pulses are 
recombined in a single beam, having the appropriate time structure for performing the experiment.   

 
An alternate scheme for the Split and Delay unit would be to spatially split the incoming FEL pulse in 

two parts and then recombine them by overlapping the two beams coming from each of the paths. 
 
Beryllium Lens Focusing: XPCS experiments rely on the capability of resolving speckles. The 

speckle size (
L(�/D)) is directly related to the beam size D at the sample position and the sample-detector 
distance L. In the small angle regime for 1.5Å X-rays, a beam size of 50 �m at the sample gives a speckle 
size of typically 60�m at 20 meter from the sample. The finite dimension of the XCS experimental 
endstation limits the availability of using the complete LCLS beam size (typically of 350 �m at the hutch 4 
FEH-location) and thus requires the use of beam-defining slits. If the speckle size does not match the 2-
dimensional detector pixel size a degradation of contrast will be observed. Reducing the beam size by using 
defining slits dramatically reduces the available incident coherent flux at the sample. Thus, Beryllium 
focusing lenses will be used to produce a small beam size without significant flux reduction. A selection of 
lens configurations is foreseen in order to achieve small beam sizes (i.e. in steps down to 10 �m) at the 
sample both for 8.265 and 24.795 keV photons (corresponding to the 1st and 3rd harmonic of the undulator 
respectively).   

 
Slit Systems: Precision slit systems are required to define the spatial region of the sample that is being 

probed by the X-ray beam and to define the speckle size. This device is of paramount importance due to the 
large spatial fluctuations of the LCLS, which can be very large for the measurements.  The details of the 
design of the slits can be found in Section 6-3. 

 
Attenuators:  In some instances it may be required to attenuate the X-ray intensity to prevent either 

sample or detector damage due to the extremely high peak power of the LCLS. Variable attenuation can be 
achieved by inserting a combination of foils into the beam bath. However, the material must be able to 
withstand the LCLS beam without damage and low-z material such as beryllium must be used. Details can 
be found in Section 6.4. 

 
Diffractometer: A standard 4-circle diffractometer is required to perform experiments using a detector 

located in the horizontal scattering plane. For small angle XPCS experiments, the diffractometer would 
hold a SAXS sample environment. For wide angle XPCS experiments, the sample will need to be aligned 
regarding its crystallographic orientation.  Standard sample environment compatible with diffractometer 
motions will be used. 

 
Local Optics:  A selection of local optics will be used for some experiments. A standard double mirror 

system in vertical scattering geometry will be used for harmonic rejection purposes. The same system can 
be used to perform XPCS experiments in grazing incidence geometry, where the beam will impinge the 
sample with a specific incidence angle. 

Small and wide angle detector stages: Two different detector stages will be constructed for the XCS 
instrument to position the 2D detector provided by BNL. Two distinct classes of XPCS experiments are 
considered: those using small angle scattering geometry, and those using diffraction geometry. Both types 
of experiment require a large sample-detector distance in order to match the speckle size (scaling as the 
inverse of the beam size at the sample). For diffraction experiments, in order to be accommodated within 
the lateral dimension of the XCS experimental hutch, a fixed distance of 6-7 m is proposed, thus permitting 
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2� angle up to 60°.  The detector would be placed in a long evacuated tube that rotates in the horizontal 
plane around the diffractometer axis. Inside the tube the detector would move both horizontally and 
vertically. This geometry would allow one to work either in diffraction geometry in the horizontal plane, or 
to investigate the sample in grazing incidence geometry (using the internal vertical translation).   

 
For small angle scattering experiments, a variable sample to detector distance from 10m up to 20m is 

proposed in the forward direction. The end of the stage consists of a large evacuated chamber in the 
forward direction which could accommodate sample-detector distance from 10 to 20 m. The chamber can 
be connected to the diffractometer with a removable evacuated flight path. In the 20 meter configuration at 
8.265 keV, the incident beam size can be 100 �m and still allow the 2D detector pixel size to match the 
speckle size, thus offering maximum contrast. In addition a standard 2� arm with a short sample detector 
distance could be used for sample alignment purposes. Figure 5-9 presents a conceptual sketch of the 
proposed instrument. 

 
Sample environment: Two sample environments will be constructed for the XCS instrument. A 

temperature regulated small angle scattering chamber will accommodate samples contained in capillaries or 
other cells, with a temperature stability of 0.1K. The ability to apply external excitation to the system (such 
as magnetic fields) will be considered.  For diffraction experiment, a high-stability furnace (stability better 
than 1mK) as well as a cryostat will be used covering the complete range of temperature required to probe 
phase transitions in hard condensed matter dynamics.   

 
 

 
 

Figure 5-9.  Conceptual layout of the XCS endstation with the two detector stages (wide and small angle) 
and the local detector for alignment purpose.  The insert present a 3D artistic view of the 
hutch with its two detector stages.  The small angle setup could provide a sample-detector 
distance of up to 20 meters in the forward direction.  The wide angle detector stage would 
allow 2� scattering angles up to 60° with a sample-detector distance of 7 meters.   
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5.2.4. XCS 2D Detector System 
 
Technical Requirements:  A very important component of this instrument will be the X-ray detector.  

XPCS requires a pixelated detector with relatively small pixel size.  The pixel size must be smaller than the 
speckle size, preferably by a factor of two to three to allow for sufficient oversampling and provide 
maximum contrast.  The speckle size is inversely dependent on the beam size at the sample, which is at 
most given by the transverse coherence length of the X-ray beam at the sample.  If the pixel size becomes 
the limiting factor, the detector distance can be increased to satisfy the oversampling requirement, but at the 
expense of scattering intensity.  Assuming a sample-detector distance of 7meters with coherent X-rays of 
8.265keV and a beam size of 30×30�m2, the pixel size is estimated to be 35x35 �m2. The requirements for 
the detector are summarized in Table 5-3.   

 
The BNL XAMPS detector system:  The XPCS 2D-detector will be a custom system built by 

Brookhaven National Laboratory since no commercial detector is available that meets the XPCS 
specifications. The detector performance parameters will be optimized for scattering experiments to be 
performed at the LCLS. Like the Pump-Probe 2D-detector this design is based on an X-ray active matrix 
pixel sensor (XAMPS) technology.  However, in this design the switch is replaced by a charge-pump 
device which allows for smaller pixel size and lower noise.   
 

The XAMPS detector is a semi-monolithic device. A pixilated high resistivity silicon sensor serves as 
the detection volume where incoming X-rays are converted into electrons.  This design ensures optimal 
quantum efficiency, since the entire wafer thickness is sensitive to X-rays. The number of diffracted X-rays 
is deduced from the integrated charge per pixel. In this detector integrated charge-pump devices control, for 
each pixel, the readout of the collected charges. The charges are stored in a potential well in each pixel and 
released by applying a controlled potential. A separate readout ASIC contains a charge-sensitive amplifier. 
The analog signals coming from the readout chip are multiplexed and then digitized in a 12 bit ADC. The 
XAMPS is read out one row at a time (1024 pixels) which results in a total readout time of about 1 ms per 
frame. A row-by-row readout requires only one amplifier channel per column which reduces the 
interconnect complexity.   

 

Parameter Specification 

Energy Range 6 - 24 keV 

Dynamic Range 100 

Readout Frame Rate > 120 Hz 

Quantum Efficiency > 90% at 8 keV 

Noise << 1 photon 

Pixel size � 35x35 �m2  

Detector Area 1024x1024 pixels 

 
Table 5-3.  Detector specifications for the XCS instrument. 
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The following technical challenges will be addressed by the XPCS detector development team:  
 

� Engineering the readout of the ASIC to have a very low noise figure while maintaining single 
photon sensitivity. 

 
� Overcoming the fabrication of a sensor with a small pixel size of 35�35 �m2 with an 

integrated charge-pump. 
 

� Sustaining a 2 Gbit/s peak data rate throughout the readout and storage process. 
 

� Engineering a data acquisition boards that will merge beam diagnostics data and perform real 
time data processing. 
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A common suite of X-ray optics will be constructed to prepare the LCLS beam for experimentation. 

The optics will be used to tailor the FEL wavelength, size and intensity for each individual endstation, as 
well as provide multiplexing capability.  Although many of the optical components are similar to current 
instrumentation at 3rd generation X-ray light sources, the design of the optics must account for the unique 
challenges presented by the LCLS FEL radiation. In particular, the enormous peak power and the 
transverse coherence of the X-ray beam must be considered. This chapter describes the current concepts of 
the various X-ray optical components for the LUSI project.   

 

6.1. OFFSET MONOCHROMATOR 
 
The XPP and XCS instrument designs include a large offset double-crystal monochromator (ODCM) 

that operates in the horizontal scattering geometry. Thin Bragg crystals will be utilized to transmit a small 
monochromatic portion of the 0.3% natural bandwidth of the LCLS FEL radiation to the XPP or XCS 
experiment, while transmitting a large fraction of the FEL radiation downstream to another experiment.  A 
600 mm horizontal offset between the monochromatic beam and the direct LCLS beam will allow 
sufficient space to position and operate X-ray diffractometers without interfering with the vacuum beam 
transport of the transmitted direct beam. The monochromator is designed to permit all crystal scattering 
angles (2�) between 9 and 50 degrees. The components of the ODCM will reside in a vacuum environment 
to avoid contamination of the Bragg reflectors and to avoid attenuation of X-ray flux due to air scattering. 
A conceptual image of the ODCM is displayed in Figure 6-1.   

 
Figure 6-1.  Schematic of the double-crystal offset monochromator. The second Bragg reflector is 

displayed at the extreme locations of the scattering range.   
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Figure 6-2.  Schematic of a Bragg crystal showing the � and � rotation axes.  The blue line represents the 

incident X-ray trajectory.   
 
Two material choices are being considered for the monochromator crystals: silicon and diamond.  

Silicon crystals have the advantage that they can be manufactured with a very high crystalline quality, i.e. 
dislocation-free.  However, due to the relatively large attenuation coefficient, the silicon crystal thickness 
must be limited to a few microns to have an appreciable transmission of the 1.5 Å FEL radiation. The 
attenuation coefficient of diamond is significantly smaller than silicon and thus much thicker crystals can 
be accommodated.  Additionally, diamond has superior thermal properties [51] and damage resistance.  
However, the manufacturing of high quality single crystal diamond is difficult. Only small portions of 
currently available single crystal diamonds are dislocation-free [52].  Both materials are being considered 
for the ODCM design.   

 
Precise control of the Bragg crystal orientation is required for operation of the monochromator, 

particularly for the horizontal scattering angle (see Figure 6-2). The resolution of this motion is determined 
by the rocking curve width of Si (2 2 0) computed for an X-ray wavelength of 0.5 Å (3rd harmonic at 24 
keV). The required motion step resolution is calculated to be 0.15 arcsec, which is approximately 1/10th the 
FWHM value of the rocking curve. However, an angular precision of 0.04 arcsec is required to steer the X-
ray beam to a precision of 40 �m at the FEH location, a distance of greater than 150 m from the XCS 
monochromator (see Section 5.2.2). Beam-based closed loop feedback systems likely cannot be 
implemented to control the angular orientation of the Bragg reflector due to inherent pulse-to-pulse 
instabilities of the LCLS beam in both intensity and position. Thus, it is a necessity that the repeatability of 
the motion system is at the same level as the angular precision. The various parameters of the ODCM are 
displayed in Table 6-1.   

 

Parameter Value 

Horizontal Offset 600 mm 

2� �Scattering Angle 9-50 degrees 

� Precision 0.04 arcsec 

� Precision 2 arcsec 

 
Table 6-1.  Specifications for offset double-crystal monochromator.   
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Figure 6-3.  Transmission and efficiency of a 2 �m perfect Si (111) Bragg reflection.  The transmission is 

shown on the left and the efficiency on the right.   
 
The spectral bandwidth of the LCLS is expected to be 0.3% of the mean photon energy for operation at 

1.5 Å. This photon energy spread exceeds the energy acceptance of a silicon Bragg reflector. Thus, a 
portion of the LCLS pulses can be spectrally selected with the use of a thin Bragg reflector to allow 
concurrent delivery of the X-ray beam to XPP experiments as well as to the FEH. Figure 6-3 displays the 
transmittance and diffraction efficiency of a 2 �m Si (111) Bragg reflector. The LCLS photon energy 
spectrum is approximated as a Gaussian distribution with a FWHM of 25 eV (0.3%). Calculations suggest 
that up to 2.5% of the 1.5 Å LCLS intensity will be accepted by the ODCM using a 2 �m and 4 �m Si 
(111) Bragg reflector for the 1st and 2nd crystal. With this arrangement as much as 85% of the incident 
intensity transmits through the 1st reflector into the X-ray transport tunnel and 1.3% transmits through the 
2nd Bragg reflector into the diagnostics beamline.   

 

6.2. X-RAY FOCUSING OPTICS 

In certain experimental situations, it is necessary to focus the LCLS FEL radiation to a significantly 
smaller spot size than the nominal size at the sample position.  Two focusing technologies will be used: 
refractive lenses and Kirkpatrick-Baez mirrors.  Numerous advantages and disadvantages exist for both 
technologies. The trade-offs between the two focusing options will be considered and the focusing choice 
will be made based upon the experimental requirements of each LUSI instrument.   

 

6.2.1. Refractive Lens Systems 

The index of refraction of hard X-rays in materials differs from unity. Thus, it is possible to focus X-
rays using an appropriately shaped lens in much the same way as a visible wavelength lens [53].  In 
general, a stack of lenses is required to focus the beam at manageable focal lengths since the index of 
refraction (1-�) only slightly differs from unity (� typically on the order of 10-4).  The lenses will be 
manufactured from beryllium to minimize the X-ray attenuation through the lens as well as maximize the 
damage threshold of the lens.  High purity beryllium with a very good surface finish must be used to 
minimize degradation the coherent phase front of the FEL beam.   

 
The primary advantage of the refractive lens system is that the beam is not deviated from the 

unfocused trajectory when the optic is inserted, as well as the ease of alignment. The two major 
disadvantages of refractive lenses are the chromaticity of the optic and transmission loss.  The index of 
refraction of hard X-rays varies with wavelength and thus for a single lens system different wavelengths 
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will have different focal properties (focal length, spot size). The transmission loss will generally be ~ 60% 
but this will depend upon the number of lenses required for each particular system.   

 

 
 

Figure 6-4.  Schematic of a single parabolic refractive lens and a compound stack of lenses.  The single lens 
is shown on the left and the compound on the right [53]. 

 

6.2.2. Kirkpatrick-Baez Mirror Systems 
 
The extreme focusing required to image single bio-molecules will be achieved using Kirkpatrick-Baez 

(KB) mirrors.  The KB concept was developed in the late 1940’s as an X-ray microscope [55].  As early as 
1953 Kirkpatrick and Pattee [56] proposed that the KB configuration could be used as to produce a small 
focus for a microprobe. The concept involves two mirrors and though it lacks the simplicity of a Be lens 
system it is achromatic and has already been demonstrated to be capable of achieving focal spot sizes of ~ 
50 nm at synchrotron radiation sources [57].  In order to mitigate surface damage from the LCLS beam the 
mirrors will be coated with B4C.  Not only is B4C damage resistant, but it introduces little effect on the 
reflectivity due to absorption.   

 

6.3. X-RAY APERATURE SYSTEMS 

A precision slit system is required to define the spatial region of the sample that is being probed by the 
X-ray beam and to remove parasitic scatter. This device is a critical beamline component due to the 
relatively large shot-to-shot spatial fluctuations of the LCLS FEL in comparison to storage ring based 
sources.  Spatial fluctuations of the X-ray beam on the sample can be problematic since there may be 
spatial dependences of the sample being studied. This can lead to alterations of the measured X-ray scatter. 
For pump-probe experiments the signal being measured is, in general, a fractional change to the 
equilibrium X-ray scatter. When spatial fluctuations are present, the incident intensity probes different 
regions of the sample and this either skews the data or prevents the study from being successfully 
performed. These problems are mitigated when an aperture is used.  The spatial fluctuation in the position 
of the X-ray beam is converted into an intensity fluctuation and can be monitored.  This ensures that the 
measured intensity is the intensity that is incident upon the sample in the region of interest and can be 
properly normalized.   
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Precision slit systems are common at current X-ray light sources.  These systems generally consist of a 
set of precision motors that are used to position polished blades.  The blade material is designed to provide 
maximum X-ray attenuation and is thus made of a high Z material such as tungsten or tantalum. However, 
some customization is required for this system to ensure that the slit blades are not damaged by the high 
peak power of the LCLS FEL radiation.  In particular, the front side of the blades must be bonded to a low 
Z material to provide sufficient attenuation so the high Z material is not damaged.  The current slit design 
for the LCLS front end optics specifies a blade material composed of a Tungsten Heavy Alloy bonded with 
Boron Carbide (see Figure 6-5).  A similar design will be implemented for the various endstation precision 
slit systems for the LUSI project.  However, the blade thickness will be significantly reduced from the 50 
mm required for the front end system since the blade will only interact with the FEL radiation (downstream 
of the front end offset mirrors).   

 
Figure 6-5.  Composition of the slit blade used for the front end of the LCLS. 

 

 
 

Figure 6-6.  Parasitic scattering observed from a set of 2 mm-thick tungsten blades.  The beam was 
apertured to a 2 �m x 2 �m spot size and the camera pixel size is 22 �m [54].   
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The transverse coherence of the FEL radiation must be considered in the design of the slit system. In 
particular, parasitic scattering from the slit blade itself can be significant when a coherent beam is 
apertured.  Experiments were performed at the ESRF to characterize this effect [54].  Figure 6-6 displays 
the X-ray profile measured after a 2 �m square aperture was placed in the X-ray beam. A cylindrical slit 
blade design was implemented to reduce the background scatter from the slit blades.  Similar solutions will 
be considered for the LUSI slit systems.  

 

6.4. ATTENUATOR SYSTEMS 
 
In some instances it may be required to attenuate the X-ray intensity to prevent either sample or 

detector damage due to the extremely high peak power of the FEL radiation. Variable attenuation can be 
achieved by inserting a combination of foils into the beam path. The foil material must be able to withstand 
the LCLS beam without damage and a low-Z material such as beryllium must be used.  A high purity 
beryllium must be manufactured with a highly polished surface finish to preserve the X-ray beam 
coherence as much as possible.  The LUSI attenuator system will provide a 106 factor in attenuation with an 
incremental attenuation of 4-steps-per decade at a photon wavelength of 1.5 Å.   
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The development and engineering of the diagnostic devices for all three LUSI instruments described in 

Chapter 3 - 5 are grouped and described in this chapter, including the EOS used to determine the relative 
timing between the electron pulse and a reference laser pulse.  All LUSI diagnostics are X-ray diagnostics, 
except for the EOS measurement, which uses the electron beam.   

 

7.1. INTRODUCTION
 
Fluctuations in the X-ray pulse characteristics from the LCLS will be much larger than at storage ring 

based X-ray sources.  This stems from the fact that each LCLS electron pulse is created and accelerated 
fresh, as well as the inherent noise in the Self Amplified Spontaneous Emission (SASE) process.  Thus, the 
fluctuations in the pulse intensity, pointing stability, wavelength, pulse duration, and arrival time of the 
LCLS X-ray pulses will be significant even when LCLS is fully commissioned and the FEL lasing process 
running at saturation.  Furthermore, depending on the exact location of the point at which the FEL beam 
saturates and reaches its minimum emittance, the source point viewed from any location downstream of the 
beam will exhibit longitudinal jitter.  Thus the source at the exit of the last undulator will show apparent 
size variation.   Table 7-1 shows the expected parameter fluctuations for the LCLS X-ray pulses.   

 
Unless effectively mitigated or characterized, the level of pulse-to-pulse fluctuations expected from the 

LCLS X-ray pulses would limit the experiments that can be performed.  For example, the experiments 
carried out at the XPP instrument will typically detect fractional changes in the X-ray scattering intensity 
induced by an excitation pulse.  Only systems that exhibit changes on the order of the inherent X-ray pulse 
intensity fluctuations would be successfully probed unless a diagnostic is used to measure the incident 
intensity, thus allowing normalization of the detected X-ray scattering intensity to the incident intensity.   

 

Parameter Value 

Pulse Intensity Fluctuation  30 % 

Spatial Jitter ~ 25 % of the beam diameter 

Center Wavelength Variation ~ 0.2 % 

Pulse Duration Jitter ~ 15 % 

X-ray to RF Timing Jitter ~ 1 ps FWHM 

Source Point Jitter ~ 5 m 

 
Table 7-1.  Expected pulse-to-pulse fluctuations of the LCLS X-ray beam.   
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7.2. DIAGNOSTIC SUITE 
 
To fully characterize the LCLS X-ray pulses in all physical aspects, a diagnostics suite will be 

developed and constructed to measure the X-ray pulse intensity, position, profile, and timing on a pulse-by-
pulse basis.  Five X-ray diagnostics will be designed to individually measure these characteristics, some 
being destructive to the X-ray pulse, and some that are capable of running concurrently with the 
experimental measurement.  The specifications of the diagnostics are summarized in Table 7-2.  The design 
and implementation of the diagnostics instrumentation will be modular and standardized whenever 
possible, allowing flexible placements.  The performance goal, technology and concept of each diagnostic 
instrument are described in this chapter.  The performance and flexibility of the diagnostics instrumentation 
will be critical to both the commissioning of X-ray optics and to the experimental success of the LUSI 
instruments.   

 
Unlike the photon diagnostics used in the Front End Enclosure (FFE), the LUSI photon diagnostics 

will only be exposed to either un-attenuated or attenuated FEL radiation, not the full LCLS beam which 
includes the spontaneous and the FEL at the center.  The full LCLS beam will be apertured, with a fixed 
mask, beam defining slits, and a collimator in the FFE, to spatially filter out the spontaneous radiation 
outside of the FEL angular and spatial distribution, and then reflected from a set of offset mirrors to 
spectrally filter out the higher energy FEL components [58].  As such, the maximum energy deposited will 
be that of a saturated FEL pulse, i.e. 2.4 mJ/pulse (at 0.79 nC charge per electron bunch) in integrated 
intensity for photon energies up to the 3rd harmonic at 25 keV.  Further attenuation of the FEL beam may 
be necessary so that there will no permanent damage to the detecting elements to allow for prolonged 
usage.   

 

Diagnostic Item Purposes Specifications 

Pop-in intensity monitor Coarse beam 
alignment/monitoring 

Destructive; Retractable; 
Dynamic range 104; 
Per-pulse operation at 120 Hz; 
Relative accuracy < 10-2 

Hard X-ray in-situ 
intensity/position monitor 

Per pulse normalization of 
experimental signals; 
High-resolution beam position 
monitoring 

In-situ; 
Transmissive (< 5% loss);  
Dynamic range 106; 
Per-pulse operation; 
Relative accuracy < 10-3 

Pop-in position/profile monitor Beam alignment/monitoring 

Destructive; Retractable; 
At 50 �m resolution 
25x25 mm2 field of view; 
At 10 �m resolution 
5x5 mm2 field of view 

Wavefront sensor/monitor Characterization of wavefront; 
Locating foci of focused beam 

Destructive; Retractable; 
Per-pulse operation at 120 Hz; 
0.15 nm < � < 1.5 nm 

Electro-optic sampling timing 
measurement 

Measure the relative timing 
between the LCLS electron beam 
and a pump laser pulse 

In-situ; 
Non-destructive;  
Per-pulse operation at 120 Hz; 
200 fs resolution 

 
Table 7-2.  Summary specifications of the LUSI diagnostics suite.   
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Figure 7-1.  Conceptual design of the X-ray pop-in diode intensity monitor.  The sensor assembly can be 
moved in and out of the beam path.   

 

7.2.1. X-ray Pop-In Intensity Monitor 
 
An X-ray diode assembly will be designed and implemented to measure the X-ray beam intensity.  

This device consists of an X-ray diode, a vacuum actuator for pop-in insertion and readout electronics (see 
Figure 7-1).  Pop-in diode monitors will be strategically placed along the X-ray beamlines, usually in close 
proximity to a reflecting optic, to aid in alignment of various components.   

 
The main purpose of these monitors is to detect when the reflection condition of a Bragg reflector or 

mirror is satisfied.  It is necessary to have the ability to retract the diode from beam path since the diode is 
not transmissive.  Thus a pneumatic actuator will be used to position the detector.  Depending upon the spot 
size of the X-ray beam at the location of the monitor and the beam intensity, it may be required to either 
attenuate the X-ray beam or use a diamond X-ray diode to avoid damage.   

 
The requirements for the X-ray diode are low noise, large dynamic range up to 104, and short-pulse 

operation (unlike in the photon counting mode, individual photons will not be time-resolved).    The diode 
could be Si based.  A similar device was used at the SPPS [59].  A charge-sensitive-amplifier will be 
needed for pulse operation to integrate the charge from the electron-hole pairs created by the X-ray pulse.  
At 8 keV, each absorbed photon produces around 2000 electron-hole pairs in silicon.  If this charge is 
collected on a 1pF capacitor, it will produce a voltage step of 0.3 mV.  A full-scale signal of 104 photons 
will generate a step of 3 V.  The charge pulse will be shaped using a shaping amplifier for condition before 
the shaped signal is digitized by an ADC of 14 bit or more.   
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7.2.2. Hard X-ray In-Situ Intensity/Position Monitor 
 
Pulse-to-pulse fluctuations of the X-ray pulse intensity are expected to be greater than 30% once the 

LCLS has been fully commissioned and running at saturation.  Thus, a single-shot transmissive intensity 
monitor is required for signal normalization.  This capability is important for the alignment of X-ray optics 
and is paramount for experiments that are detecting induced changes in the X-ray scattering due to external 
influences, particularly for the XPP instrument.   

 
A non-destructive hard X-ray intensity monitor will be constructed based on the detection of 

inelastically scattered X-ray photons from a thin foil.  Calculations suggest that 0.2% of incident photons 
are inelastically scattered by a 100 μm thick piece of beryllium [60].  As much as 30% of the scattered 
photons can be collected by an X-ray diode placed a few millimeters upstream of the foil.  When used in 
the direct LCLS beam (1012 photons/per pulse), this equates to 109 photons incident upon the X-ray diode.  
The shot noise for this amount of photons is 3x10-5. Thus, an intensity measurement with a precision of 10-3 
should be achievable with appropriate designs for the X-ray diode and readout electronics.   

 
The intensity monitor can also serve as a beam position monitor (BPM) with the use of a quadrant X-

ray diode array.  A similar concept, based on X-ray fluorescence, has been developed at the Advanced 
Photon Source and is currently being commercially manufactured by Oxford Danfysik [61]. Calibration of 
the BPM is performed by precisely translating the diode array by known distances while monitoring the 
signals in the diode array.  A schematic of the hard X-ray intensity monitor is displayed in Figure 7-2, 
where a fraction of the X-ray beam, incident from right to left, is backscattered from a foil target onto a 
quadrant diode array.   

 

  
 

Figure 7-2.  Conceptual design of the hard X-ray in-situ intensity/position monitor.  On the left is the 
overall assembly with translational stages, and on the right is an expanded view of the 
scattering foil and the quadrature cell for position monitoring.   
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Figure 7-3.  Conceptual design of the X-ray position/profile monitor.  On the left is the full assembly with 
the imaging module with a CCD camera, and on the right is the scintillator screen.  The sensor 
assembly can be moved in and out of the beam path.   

 

7.2.3. Pop-In Position/Profile Monitor 
 
A pop-in position diagnostic that can capture a direct image of the X-ray beam position and profile is 

required for assisting the alignment of optical components.  A fluorescent screen assembly will be designed 
and implemented for accomplishing this.  The assembly is composed of a fluorescent screen, a mirror for 
visible wavelength light, a vacuum actuator and an optical imaging system (see Figure 7-3).  This position 
monitor absorbs the entire X-ray pulse.    

 
A cerium-doped yttrium aluminum garnet (YAG:Ce) or cerium-doped lutetium oxyorthosilicate 

(LSO:Ce) crystal could be used as the scintillating element of the profile monitor.  These materials have 
been chosen for their high damage threshold and high luminescence yield.  The scintillating element 
converts X-rays into visible light, which in turn can be captured optically.   

 
The X-ray position monitors will be designed to operate in two configurations.  The first is a large field 

of view configuration (25.4 mm x 25.4 mm) with coarse spatial resolution (55 μm).  This operating mode 
will be used for locating and steering the X-ray beam.  The second configuration has a narrow field of view 
(5 mm x 5 mm) with a higher resolving power (10 μm).  This operating mode will be implemented when 
precise positioning of an optic into the X-ray beam is required.   

 
The optical imaging system for the X-ray profile monitor will have a CCD camera with moderate 

resolution and readout speed.  The optical element consists of a zoom lens that is placed some distance (200 
mm) away from the scintillating screen.  If an image needs to be captured digitally, a frame grabber 
application will be used.  If per pulse operation is required, the scintillating materials should have short 
enough decay time to allow images lit from a given pulse to be read out in time before the arrival of the 
very next pulse.  Whether the readout electronics have the readout speed to do that depends on the 
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resolution required.  Typical commercial CCD camera has a readout speed of 10 Hz at full frame, thus 
reading at 120 Hz would mean less number of pixels, i.e., lower resolution.   

 

7.2.4. Wavefront Monitor 
 
A diagnostic that has the ability to measure the spatial profile of a sub-micron X-ray beam is required 

for successful commissioning of the focusing optics implemented in the LUSI project.  Techniques such as 
scanning a knife-edge across the focused beam or imaging the focus with a scintillating material cannot be 
used since no material can withstand the peak energy density of the focused LCLS beam.  There are two 
possible options, one option being a Hartman wavefront analyzer that is used to measure the focal 
properties of the X-ray beam and another based on diffractive imaging of the focal field distribution.   

 

7.2.4.1. Hartmann Wavefront Sensor 
 
A Hartmann wavefront sensor works by subdividing an input wave into multiple elementary beams by 

a micro hole array.  The multiple elementary beams are then imaged onto a X-ray CCD camera placed at a 
known distance from the hole array.  A software algorithm analyzes the image and determines the local 
wavefront slope of each elementary beam.  A reconstruction of the focal spot size is then determined by a 
second algorithm that back propagates the measured wavefront.  This metrology technique circumvents the 
damage problem since it operates significantly downstream of the focus.  It also has the ability to operate in 
single shot mode, which is important since jitter in the focal spot size and position is expected.   

 
A diagram describing the operational principles of a Hartmann wavefront sensor is displayed in Figure 

7-4.  First, an image is of the X-ray transmission through a pinhole array is acquired with an X-ray CCD 
camera.  The local phase front tilt of the X-ray beam profile is then computed with knowledge of the 
pinhole array orientation with respect to the X-ray detector.  The focal properties of the X-ray beam are 
then computed by an algorithm that back-propagates the X-ray wavefront.  Table 7-3 shows the 
specifications for an X-ray Hartman sensor at 8 keV based on a 4 keV model HASOTM X-EUV wavefront 
sensor by Imagine Optics [62].   

 

 
 

Figure 7-4.  Operational schematic of a Hartmann wavefront sensor.   
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Parameter Value 

Aperture dimension  10 x 10 mm² 

Number of sub-aperture dedicated for analysis  75 x 75 

Curvature dynamic range ± 0.5 m to ± �  0.4 to 4 m - divergent beam 

Repeatability (rms)  ~ �/10 

measurement accuracy in absolute mode (rms)  ~ �/5 

measurement accuracy in relative mode (rms)   ~ �/4 

Tilt measurement sensitivity (rms)  0.05 �rad 

Focus measurement sensitivity (rms)  < 1x10-4 m-1 

Spatial beam sampling step   ~ 130 �m 

Minimum readout time   ~ 0.6 sec ( @2 MHz digitization ) 

Working photon energy (wavelength) 8 keV (0.15 nm) 

Storage temperature / Operating environment   < 55°C / 5°C - 30°C 

Compliant vacuum 10-6 bar 

 
Table 7-3.  Specifications for a Hartmann Wavefront Sensor. 

 

7.2.4.2. Diffractive Imager 
 
It is also possible to reconstruct the wavefront based on a newly-developed technique called diffractive 

imaging whereby the intensity pattern of a focused beam is over-sampled and used for field reconstruction 
using iterative phase retrieval algorithm [63].   

 

 
 

Figure 7-5.  Schematic of diffractive imaging of a focused beam from a Be lens. 
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A conceptual experimental setup for the diffractive imaging is shown in Figure 7-5 for a focused beam 
using a Be lens.  The far field intensity pattern is recorded using a CCD camera and used for reconstruction 
of the field anywhere between the zone plate and the image plane.  The phase retrieval algorithm involves 
iteratively propagating fields between these two planes and imposing support at these two planes by 
confining the lateral extents of the zone plate and the image intensity until a stable solution is found.  The 
advantage of the diffractive imaging is its simplicity in implementation and application.  Its potential 
difficulty may lie in defining the support at the focusing optic in the case of Kirkpatrick-Baez mirror pairs.   

 

7.2.5. Electro-Optic Timing Diagnostic 
 
The temporal resolution of laser pump/X-ray probe experiments, in general, is limited by the 

convolution of the probe pulse duration with the synchronization precision of the pump and probe.  The 
LCLS FEL pulses are expected to have duration of 230 fs FWHM, however, the pulse duration will 
decrease to 100 fs if lasing can be achieved with less charge in the electron bunch.  Additionally, there are 
schemes to decrease the pulse duration to as short as a few femtoseconds with the use of a slotted foil at the 
center of the second electron bunch compressor [64].  Laser excitation pulses must be synchronized to 
within a fraction of the FEL pulse duration to realize the ultimate temporal limit of the LCLS and thus 10 fs 
X-ray/laser synchronism is desired.   

 
The synchronization of optical laser pulses to accelerator generated X-ray pulses will be partly 

accomplished by frequency stabilizing the laser repetition rate to a subharmonic of the low-level radio 
frequency (LLRF) electrical signal used to time the components of the accelerator.  Adjustment of the laser 
frequency is achieved with the use of feedback electronics and a piezoelectric actuator to adjust the laser 
cavity.  Sub-100 fs short term laser/LLRF phase jitter can be realized.  However, the X-ray pulse arrival 
time will jitter with respect to the LLRF at a level of ~ 1 ps primarily due to shot-to-shot energy 
fluctuations of the electron bunch.  Therefore, to perform pump-probe experiments with sub-ps resolution, 
an additional diagnostic will be required.    

 

7.2.5.1. Electro-Optic Sampling 
 
The temporal resolution of pump-probe experiments can be reduced by measuring the arrival time of 

each individual LCLS electron bunch with respect to the pump laser using electro-optic sampling (EOS) 
[66].  In this technique, the electric field of the electron bunch that generates X-rays is used to alter the 
optical properties of an electro-optic crystal.  This alteration is probed with an optical laser that is precisely 
synchronized to the accelerator LLRF.  Only the portion of the laser that is propagating within the electro-
optic crystal when the electric filed is present will be altered.  In this manner, the arrival time of the 
electron bunch is encoded onto spatial profile of the optical laser.   

 
Figure 7-6 displays EOS data collected at the SPPS.  The centroid of the electro-optic feature is 

analyzed and used to time stamp each X-ray pulse and the data is compiled accordingly.  The position 
(timing) of the centroid is determined to be better than a fraction of the FWHM to less than 100fs.  Recent 
experiments at the SPPS clearly demonstrated the feasibility of the EOS timing method [67].   

 
The EOS apparatus will be installed in the Linac-to-Undulator (LTU) section of the LCLS.  At SPPS a 

common laser system was used to make the EOS measurement as well as photo-excite samples for pump-
probe experiments.  Due to the large distances separating the NEH and LTU, duplication of this setup at 
LCLS is not readily feasible and a separate laser system will be used to perform EOS.  Thus, the two laser 
systems must be precisely synchronized to each other.  Another distinction that must be considered is that 
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the LCLS is a self-amplified source and SPPS was a spontaneous source.  EOS measures the arrival time of 
the electron bunch and at a spontaneous source this timing information will faithfully map onto the timing 
of the X-ray pulse.  This conclusion cannot be drawn for a SASE-based source since there may be intra-
bunch timing jitter of the FEL radiation within the electron bunch profile.  Therefore, the temporal 
resolution provided by EOS in this context will be limited by the convolution of the intra-bunch timing 
jitter and the synchronization precision of the EOS laser and pump/probe laser.  A 200 fs temporal 
resolution is expected.   

 

 
 

Figure 7-6.  EOS data acquired and analyzed at the SPPS. A single electro-optic signal is displayed on the 
left with a Lorentzian fit. One hundred consecutive EO samples is displayed on the right.   

 
 

 
 

Figure 7-7.  Conceptual design of the electro-optic diagnostic vacuum chamber.   
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Figure 7-7 displays a conceptual design of the EOS vacuum chamber.  The EO crystal will be in close 
proximity from the trajectory of the electron beam.  The electric field lines will be almost perpendicular to 
the beam direction (opening angle = 1/ ~ 1/30000 at 15 GeV for LCLS electron energy) and thus the exact 
location of the EO crystal will not impact the temporal resolution but only the signal strength.  The EOS 
laser will be introduced into the chamber via visible ports, and the angle of incidence onto the EO crystal 
will define the dynamic range of the measurement.  The chamber design will permit some adjustment of the 
incident angle.    

 

7.2.5.2. Stabilized Fiber Optic LLRF Network 
 
The synchronization of all LCLS timing critical system will be achieved with the help of the stabilized 

fiber optic LLRF network being developed by a team at LBNL in collaboration with the LCLS project.  
This network will distribute LLRF signals on a length-stabilized fiber network with jitters less than a few fs 
to distribution points in a start-configuration, with each branch individually stabilized.   

 
The long geographical separation of the distribution points necessitates that the length of the fiber 

distribution network be stabilized to counter thermal drifts, ground motions, or seismic activities.  The 
LBNL team uses an interferometric technique, whereby the timing delay jitter through the fibers will be 
stabilized by comparing a retro-reflected pulse from the distribution point end with a reference pulse from 
the sending end, and actively controlling the fiber length.  The most current version of the LBNL fiber 
stabilization network has a dynamic range of 1 ns and a timing stability of a few fs.   

 
The distribution points include the gun laser system for the photo-injector in Sector 20 (controlling 

electron beam pulse), the individual RF cavities along the linac cavities (also controlling electron-beam 
pulse timing), the EOS apparatus, and the each experimental endstation where there is a pump laser 
(controlling pump laser pulse timing) shown schematically in Figure 7-8.  The RF cavities are actively 
locked to the optical clock phase.  Most of the RF timing error is contained within a 10 kHz bandwidth, so 
these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and 
transmitted to correct laser timing at the endstations.   

 

 
 

Figure 7-8.  Stabilized fiber optic LLRF network for fs timing. 
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7.2.6. Interconnection with Control/Data Systems 
 
The diagnostic signals are ultimately measured and used for analyzing the experimental measurement.  

The mechanism for distributing theses measured parameters is discussed in the diagnostics section of the 
Control/Data System (Chapter 8) in this document.  In particular, we discuss the following important cases.   

 
Beam Characteristics Monitoring for Data Acquisition:  X-ray beam intensity, position, direction, 

energy, and profile will be measured, some at the 120 Hz rep rate.  The parameters will be distributed to the 
experimental stations on the 120 Hz real-time network.  The motion of all movable parts in the diagnostic 
apparatus will be controlled via the Control Subsystem, and the detectors sampled by the Data Subsystem. 

 
Feedback to Electron Beam:  The X-ray beam characteristics are fed back to electron beam 

diagnostic system for optimizing beam steering, etc.  The feedback could be at 120 Hz or lower frequency 
for slower drift problem corrections.  The network again should provide real-time performance at 120 Hz 
rep rate of the LCLS beam.   

 
EOS to Controls/Data System:  The X-ray beam/electron beam relative timing measurement will be 

measured at 120 Hz rate.  The timing signal will be distributed to pump-probe type of experiments on the 
120 Hz real-time network.  The slow controls in the EOS chamber will be controlled by the Controls 
Subsystem.  The detectors including the CCD camera will be sampled using the Data Subsystem.   
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The 120 Hz per pulse data collection, high data rate, large data volume, and precise timing control of 

the LCLS experiments go much beyond those at 3rd generation or older synchrotron sources and require 
considerable complexity and sophistication in the control and data system in design, implementation, and 
integration, making them unfeasible for any individual experimental team.  As such, the LUSI controls and 
data infrastructure will provide standard controls, timing measurement, data acquisition capabilities, data 
storage and management capabilities, and certain common data analysis capabilities to all instruments.   

 

8.1. SYSTEM SCOPE 
 
Included in the scope of the LUSI controls and data system are the Coherent X-ray Imaging (CXI) 

instrument, the X-ray Pump-Probe (XPP) Instrument, and the X-ray Correlation Spectroscopy (XCS) 
Instrument including the long in-tunnel beam transport. The XPP instrument will be located in the Near 
Experimental Hall (NEH), and the CXI and XCS instruments will be located in the Far Experimental Hall 
(FEH) (see Figure 2-2 and Figure 2-3). The scientific programs that will be conducted in all three 
instruments are described in Chapters 3, 4, and 5, and present similar generic needs in conventional vacuum 
and motion control, as well as the ability to use fast 2-D pixelated detectors being developed by the detector 
groups at Cornell University and BNL.  The scope will also include the controls and data acquisition of the 
common diagnostic components being developed for the three instruments as described in Chapter 7.  An 
important objective is to identify and take advantage of the requirements commonality of all LUSI 
instruments, as well as the AMO instrument being developed by the LCLS, to arrive at a single 
standardized architectural framework for controls, data acquisition, and data management systems.  The 
specific needs of individual instruments will be addressed on this common framework.   

 
 

 
 

Figure 8-1.  Schematic Diagram of LUSI Controls/Data Acquisition System. 
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8.2. SYSTEM OVERVIEW 
 
The LUSI controls/data system will have two major subsystems, the control subsystem and the data 

subsystem, that interact with the LCLS and SLAC control/data systems as illustrated in Figure 8-1.  It will 
be designed to interoperate with all relevant existing hardware and software infrastructure at SLAC, 
especially the LCLS and SLAC’s Scientific Computing and Computing Services (SCCS). Object-oriented 
design, upgradeable to take advantage of the fast moving technological advances in data acquisition and 
management, will be implemented to provide plug-and-plays capability for certain equipment.  In 
application development, popular software techniques such as multiple-threading, message based inter-
process communication will be used to avoid implementations that are monolithic and thus have poor 
maintainability.   

 

8.2.1. System Functionalities 
 
 Controls Subsystem:  The LUSI control subsystem will consist of three major components: the slow 

control component, the 120 Hz real-time operation component, and the fast timing component as shown in 
Figure 8-2.  The slow control component will perform vacuum and motion control. Substantial 
commonality exists between the LUSI and LCLS slow control system requirements.  Wherever applicable, 
the LCLS control system hardware and software architecture will be adopted.  As such, it will be 
implemented on the EPICS platform [69] used by the LCLS control system [70].  But unlike the LCLS 
control system, there will be very minimal direct communication between the LUSI control subsystem and 
the existing SLAC accelerator control system.  Instead, the accelerator-experiment interaction, if any, will 
be facilitated via the LCLS controls.   

 
The 120 Hz real-time operation component will be designed to embed pulse characterization 

information with experimental data acquired with the 2D pixelated detectors on a per pulse basis.  This 
requirement stems from the intrinsic wavelength, intensity, timing, positional, and directional jitters in the 
FEL pulses generated via the SASE process.  As a result, each pulse must be fully characterized.  In 
addition to providing information for experimental analysis, the 120 Hz operation will provide electron 
beam feedback to the accelerator system.  To implement 120 Hz operation, the non-deterministic nature of 
the EPICS platform will necessitate a separate network infrastructure such as a reflective memory system 
[71] such as SCRAMNet to achieve latency of < 8.3 ms required by the 120 Hz operation frequency.   

 
 

 
 

Figure 8-2.  Component Level Block Diagram of LUSI Control Subsystem. 

Slow 
Control
via
EPICS

120 Hz 
Real-time 
Operation

Fast 
Timing 

LUSI Controls Subsystem 

EPICS infrastructure/ScramNet/Timing Backbone 



C O N C E P T U A L  D E S I G N  R E P O R T  
______________________________________________________________________________________ 

C O N T R O L S  A N D  D A T A  S Y S T E M S    8-3 

The XPP instrument requires additional controls functionality in timing synchronization between the 
pump laser pulse and the probe X-ray pulse, with an ultimate timing resolution of order 100 fs.  This 
resolution will be achieved by the EOS measurements (see Section 7.2.5).  The EOS timing component 
must be able to, on per pulse basis, receive the pulse information and encode it with the timing delay 
parameter, and distribute the encoded pulse information to the data subsystem. The receiving/dispatching 
task will be implemented on the 120 Hz framework.  In addition, the EOS measurement will rely on a 
timing distribution network, which is being developed by a team from LBNL and distributes timing signals 
to the photo-injector, the low-level RF system, and other distribution points with less than 10 fs jitter.   

 
The Control Subsystem described above will provide the following functionalities: 
(1) Beamline Operation; 
(2) Optics Controls; 
(3) Timing  and Triggering; 
(4) Fast Feedback to the Photon/Electron Beam; 
(5) Diagnostics of the Photon Beam; 
(6) Laser Control and Safety System; 
(7) Machine Protection Systems; 
(8) Vacuum System Controls; 
(9) Interface to the Data Subsystem and LCLS Control System. 
 
Data Subsystem:  The LUSI Data Subsystem will consist of three major components: the Data 

Acquisition Component, the Data Management Component, and the Data Analysis Component as shown in 
Figure 8-3.  All LUSI instruments will be equipped with 2D multi-megapixel detectors that generate raw 
data flow at a peak rate of greater than a few Gbit/s or even tens of Gbit/s in the not so distant future, thus 
requiring a data acquisition system with architecture, implementation, and technology comparable to those 
having traditionally been used for high energy physics experiments such as BaBar at SLAC.  In addition, 
single molecular imaging experiments will often require up to 10 million frames of good images to achieve 
desired statistics, totaling 20 TB of data volume assuming 2 MB per frame.  Assuming a 50% successful 
frame rate, a 50% duty cycle, and a 120 Hz operation, the total measurement time needed to acquire all 10 
million frames will last up a little over 4 days.  As such, a data storage system and network infrastructure 
compatible with the high peak rate and long experimental duration will be needed.  Furthermore, the 
intrinsic FEL fluctuations make it imperative to implement capabilities for doing on-the-fly data analysis to 
provide real-time feedback to users.   

 
 

 
 

Figure 8-3.  Component Level Block Diagram of LUSI Data Subsystem. 
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The Data Subsystem will use functionalities provided by the Control Subsystem to achieve its own as 
in the case of a specific type of measurement whereby certain optic element may be moved while various 
detector signals are being acquired.  It will also use the EPICS framework for controls/communications 
tasks that do not require low latency.  On the other hand, the low latency network will be used for the 120 
Hz data acquisition.  For on-line data storage, a network with an aggregated bandwidth of multi Gbit/s will 
be used.  For longer term data archival, data in the on-line storage will be transferred to the data farm in 
SCCS, in a way similar to what the BaBar project had implemented for managing its massive data volume.  
In addition to hosting the LUSI data archiving, SCCS with its computer clusters will need to provide 
computational resources for certain offline analysis and data visualization for LUSI experiments as well.   

 
The Data Subsystem described above will provide the following functionalities: 
(1) Experimental Measurements; 
(2) Detector Controls ; 
(3) Interface to Canned Software for Experimental Controls; 
(4) Real-Time Data Processing; 
(5) Quick View Rendering and Visualization; 
(6) On-line Storage; 
(7) Interface to Long Term Storage for Data Archiving/Retrieval; 
(8) Offline Data Analysis; 
(9) Volume Rendering and Visualization; 
(10) Interface to High-Level Applications; 
(11) Interface to Control Subsystem; 
 

8.3. CONTROLS SUBSYSTEM 

8.3.1. Controls Architecture 
 
The architecture of the Control Subsystem is schematically shown in Figure 8-4.  It will be primarily 

built on the EPICS framework, with additional real-time applications deriving services from the EVG/EVR 
network, the low-latency network, and the fast timing network.  The EPICS network will have aggregated 
bandwidth exceeding 10Gbit/s and will be a part of the LCLS EPICS network, or a separate subnet 
supporting only LUSI clients and servers.  The servers are the device controller for pumps, diffractometers, 
etc; the clients are the experimental control stations.   

 
The LUSI Control Subsystem will control the basic operations of all experimental endstations in the 

two experimental halls, the NEH and FEH, perform experiments by controlling beamline optical elements 
and scattering/diffraction instruments, provide fast feedback to the electron beam via LCLC control system 
for optimizing LCLS operation, perform X-ray beam diagnostics by monitoring various beam positioning 
and intensity sensors, obtain the timing of electron beam to facilitate synchronization between the X-ray 
pulses and those of the pump laser.  It will provide all the safety and interlock systems for the X-ray and 
laser beams for personnel and machine protections, and control vacuum gauges and controllers in 
endstations and along the long transport tunnel connecting the NEH and FEH.   

 
The Control Subsystem will be based on a network architecture as shown in Figure 8-5 with high level 

applications and functionalities being the top most layer, the communication networks being the bottom 
layer for executing network primitives, and in between the middle layer of functional blocks for performing 
specific tasks such as controlling a laser, etc.  Below each of the three layers will be described below in 
more details.   
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Figure 8-4.  Architecture of the Control Subsystem. 

 
 

 
 

Figure 8-5.  Layered Model for Controls Subsystem. 
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8.3.2. Control Networks 
 
EPICS Network:  The LUSI Control/Data System like the LCLS Control System will be based on the 

EPICS platform [70], which is widely used by the scientific community for controlling experimental 
systems.  The EPICS platform uses Client/Server techniques to provide communication among various 
control entities.  Most servers, called Input/Output Controllers (IOCs), perform real-world I/O and local 
control tasks, and make information about their states available to their clients via the Channel Access (CA) 
network protocol, which is designed for high bandwidth, quasi real-time network applications.  The 
hardware architecture of EPICS is distributed such that each IOC or OPI (OPerator Interface) can 
communicate with all the others, providing flexibility and scalability to system implementation [69].  
However, the CA protocol, in its most native implementation using UDP protocol, is not deterministic in 
timing and delivery, making its real-time applications questionable at best.  Therefore, in timing critical 
applications, either performance enhancement implementation on top of the Channel Access protocol or 
other alternative network architecture must be used.   

 
Event Generator/Receiver: Separated from the EPICS network infrastructure, there is another 

dedicated private network used for the timing and triggering for the LCLS accelerator system, whose role is 
to provide synchronization among a number of processes:  

 
� The injection of the electron bunch into the accelerator.   
� Energizing pulsed devices like klystrons and pulsed magnets.   
� Data acquisition from accelerator diagnostic devices such as BPMs to coincide with the 

passage of the beam pulse.   
 
This timing/triggering system is the so-called Event Generator/Receiver system and has been used by 

the existing SLC control system for all beam programs at SLAC [72].  The timing is to be synchronized 
with the SLAC 476 MHz reference RF signal and the 360 Hz power line frequency by generation of 360 
Hz timing fiducials on a 476 MHz carrier frequency broadcast on the Main Drive Line (MDL) running the 
entire length of the accelerator including the undulator, beam transport, and the front end enclosure.   

 
For the LUSI Control Subsystem EVR's should be placed in experimental stations in both NEH and 

FEH for per pulse triggering.  The EVR's can receive beam code information distributed by SLC via a 
Master Pattern Generator (MPG) which broadcasts a 128-bit word at a rate of 360 Hz over a dedicated 
network, PNET.  This enables EPICS to deliver timing distribution for synchronized operations between 
different IOC's and controlling the sequencing of various processes.  This EVG/EVR network, however, is 
point to multiple-point and one directional, and lacks bandwidth for other type of real-time applications 
where large amount of data needed to be moved around from anywhere on the network as in the case of the 
low-latency network to be described below.   

 
Low-Latency Network:  The 120 Hz real-time operation requires a network implementation that 

provides guaranteed delivery and a latency of at most 8.3 ms.  The applications include embedding 
diagnostic signals into experimental measurement data on a pulse by pulse basis or feedback to the electron 
beam based on endstation photon beam measurements for orbital correction before the very next pulse is 
directed down the accelerator path.  A similar requirement comes from the Machine Protection System 
where the only way to prevent equipment damage in case of faults is to dump the next electron beam before 
the next pulse due to the slowness of the very heavy photon beam shutter.    

 
One possible implementation to achieve this network performance is to add retransmission 

mechanisms on top of the UDP protocol, such as that used by the RUDP or TCP, but at the expense of 
increasing network traffic, which could be alleviated by using a separate network, or allocating more 
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bandwidth to avoid collisions.  However, this approach still lacks the deterministic nature due to the fact 
that it is really a software implementation for real-time performance.   

 
A more straightforward approach that derives real-time performance in hardware implementation is to 

use a network infrastructure such as a SCRAMNet system, which delivers ultra-low network latency of less 
than 1ms and a few hundreds of MB/s throughput using the replicated shared-memory network technique.  
A special feature of SCRAMNet is the network interrupts which are generated on SCRAMNet when a 
certain event happens and then translated into a local interrupt on computers in the network that are 
interested in that specific interrupt.  The SCRAMNet is typically in a ring topology but other topology is 
also possible by using passive switches or other calling options.   

 
Fast Timing Network:  The sub-picosecond pulse nature of the LCLS beam represents a unique 

opportunity for experimental measurements that aim to study ultra-fast dynamics in physical systems, and 
at the same time creates a formidable challenge for timing and synchronization at the sub-picosecond level.  
For example, in the X-ray pump-probe experiment, the pump laser pulses needs to be synchronized with 
the probe X-ray pulses to less than 10 fs at point of interaction.  However, the timing of the X-ray pulses is 
rather difficult to measure.  Instead, the timing of the electron beam bunch that generates the X-ray pulse is 
used.   

 
To achieve required fs timing synchronization, a collaboration between the LCLS project and team at 

LBNL is developing a fiber distributed optical timing network that distributes timing signals with jitters 
less than a few fs to the photo-injector for the, the low-level RF system of the linac, the Electro-Optic 
timing measurement apparatus for the electron beam to X-ray beam synchronization, and the each 
experimental endstation where there is a pump laser.  A high frequency clock signal is distributed via fiber 
to the gun laser for the photo-injector (controlling electron beam pulse), to RF cavities (also controlling X-
ray probe pulse timing), and to mode-locked lasers at endstations (controlling pump laser pulse timing).  
The RF cavities are actively locked to the optical clock phase.  Most of the RF timing error is contained 
within a 10 kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun 
phase) can be detected and transmitted to correct laser timing at the endstations.   

 
The long geographical separation of the distribution points necessitates that the length of the fiber 

distribution network be stabilized to counter thermal drifts, ground motions, or seismic activities.  The 
LBNL team uses an interferometric technique, whereby the timing delay jitter through the fibers will be 
stabilized by comparing a retro-reflected pulse from the distribution point end with a reference pulse from 
the sending end, and actively controlling the fiber length.  The most current version of the LBNL fiber 
stabilization network has a dynamic range of 1 ns and a timing stability of a few fs.   

 

8.3.3. Slow EPICS Controls 
 
All controls that are slow, supervisory, and not timing critical are handled by the EPICS Control 

Component, including motion controls for optical elements along the transport and in the endstation, 
vacuum system controls, and in general the communication among entities that are not timing sensitive and 
not required of being deterministic.  The controls of all diagnostic equipment will be made via the EPICS 
control network, although the distribution of the diagnostic data will be coordinated by the Diagnostics 
Component.  Other functional task such as triggering is also handled by the EPICS control such as the 
simple signaling applications with a small or minimal network bandwidth requirement in case of starting  
the detector integration cycle shortly before the arrival of the X-ray pulse, EVR's can be used.   

 
Optics Controls:  The X-ray optical elements associated with all three endstations will be controlled 

by the Optics Control Component and include: 



L C L S  U L T R A F A S T  S C I E N C E  I N S T R U M E N T S  
______________________________________________________________________________________ 

8-8   C O N T R O L S  A N D  D A T A  S Y S T E M S  

 
 

Figure 8-6.  Block Diagram of the Optics Control Component. 
 
(1) CXI and XPP Be lens focusing elements; 
(2) CXI hard X-ray KB focusing mirrors; 
(3) XPP and XCS hard X-ray monochromators; 
(4) XCS hard X-ray split-delay element; 
(5) Attenuators; 
(6) Collimators; 
(7) Adjustable precision slits; 
(8) Fond End Enclosure (FEE) elements that may need to be controlled for beam steering; 
 
Motion Controls:  Optics Control Component will execute translations and rotations of the optical 

elements in terms of specified range, accuracy, and stability.  The extremely collimated LSLC X-ray beam 
coupled with the large distance between the source and the final measurement spot, which can reach 500m 
from the end of the undulator to the experimental endstations in the FEH, will demand very tight tolerances 
on all linear and angular controls.   In addition, the intrinsic beam jitters in transverse positions, beam 
pointing, and X-ray energies will put additional limits on the control stabilities.  In cases where fine angular 
motion and stability, a level arm will be used in place of a rotational stage.  Almost all motions will always 
run in open loop and will need to have encoders for position read-back to correct for beam jitters on per 
pulse basis.   

 
Position Read-Back:  The linear position will be measured directly with linear variable differential 

transformers (LVDTs) in some cases or capacitance gauges in others where nm or even sub-nm resolutions 
will be required.  LVDTs can provide moderate resolution (essentially determined by the number of bits in 
the read-out ADC and the LVDT range of travel), and good linearity (< 0.15%), and are very ease to use.  
Other applications may need to use optical interferometric encoders for sub-nm precision.   

 
Vacuum System:  The vacuum associated with all three endstations will be controlled by the Vacuum 

Control Component and include: 
(1) CXI sample chamber; 
(2) CXI KB focusing mirrors chambers; 
(3) XPP sample chamber; 
(4) XPP and XCS hard X-ray monochromators chambers; 
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(5) XCS hard X-ray split-delay element chamber; 
(6) Beam transport within endstations; 
(7) Long beam transport in tunnel connecting FEH and FEH; 

Vacuum Controls:  Vacuum control will consist of controlling of the pump power supply, reading and 
controlling of the gauges and actions of the gate valves to either open or close.  The values of gauge 
readings and status of the valves are made available to the control system both for long-term archiving and 
for alarm monitoring.  A vacuum valve logic controller determines whether a valve can be opened or closed 
according to the state of the machine, other valves and measured vacuum pressure.  The controllers can be 
stand alone units which can be operated independently of the rest of the control system, but always report 
their status to the control system.  They also allow for remote operation.   

Triggering:  The LUSI Instruments will use the LCLS timing triggering system to provide hardware 
triggers and the data required at the beam rate for control and data acquisition purposes.  The LCLS timing 
trigger system will provide operations with the ability to select beam rates of up to 120 Hz, deliver 
independent subsystem triggers over a 1 second super cycle, support synchronized data acquisition for 
applications, provide triggers up to 120 Hz with long term jitter of less than 20 picoseconds, and provide 
gates with a resolution of 8 ns [74].  The LCLS timing system consists of the LCLS Master Pattern 
Generator (MPG) and the Event Receivers.  The Main Drive Line (MDL) supplies the RF phase locked 
fiducial and 360 Hz timing triggers to the LCLS MPG; the SLC MPG supplies timing information via 
PNET to the LCLS MPG.  The LCLS MPG integrates the SLC timing information with the LCLS timing 
information, writes it to a buffer in the Event Generator (EVG) which then sends it out over fiber optic 
cable to the EVRs distributed throughout the control system to provide synchronized timing triggers and 
timing information.   

 
Detector Triggering:  The 2D pixelated detector often times needs to start and stop integration cycle 

shortly before the arrival of the X-ray pulse and for a preset integration time to minimize the effect of 
charge leakage.  The triggering functionality is thus very crucial for this application no other timing signal 
can be used for this purpose with the required resolution and deterministic behavior.  The important feature 
of the triggering system is that the triggering can happen before the arrival of the pulse, whereas other 
timing measurements provide the timing information only after the fact.  The triggering can also support 
fan-out to allow multiple triggers with adjustable time delays.   

 

8.3.4. Pulse-by-Pulse Measurement 
 
For the LCLS X-ray pulses, there will be expected intensity fluctuations exceeding 30%, and spatial 

jitter of order 25% of beam diameter, wavelength fluctuations of order 0.2% of center wavelength 
equivalent to the LCLS intrinsic bandwidth, pulse duration variation of order 15%, and X-ray pulse/LCLS 
RF timing fluctuations of order 1 ps.  To take measurements at the maximum possible rate, each 
measurement for a given pulse must be properly analyzed, thus requiring diagnostic measurements of the 
electron beam as well as the photon beam on per pulse basis.  The diagnostic information must be available 
to both the accelerator operations and the experiment itself.  Therefore, the LUSI instruments must support 
this pulse-by-pulse operation not previously required of those at conventional synchrotron sources.   

 
X-ray Beam Diagnostics:  The diagnostics hardware associated with all three endstations will be 

controlled by the Diagnostic Control Component and include: 
(1) Beam Profiler/Imager; 
(2) Beam Intensity Monitor; 
(3) Compton Beam Position Monitor/Intensity Monitor; 
(4) Wavefront Sensor; 



L C L S  U L T R A F A S T  S C I E N C E  I N S T R U M E N T S  
______________________________________________________________________________________ 

8-10   C O N T R O L S  A N D  D A T A  S Y S T E M S  

(5) Spatial Correlation Apparatus (to be implemented in the future); 
(6) Temporal Correlation Measurement Apparatus (to be implemented in the future); 
 
The hardware required to operate the X-ray beam diagnostics are described in the Chapter 7.  In 

general, the diagnostics will generate diagnostic signals that must be processed to provide information to 
the user.  The type of signals can be separated into two categories: point detectors (intensity monitors, 
position monitors) and 2D images (beam profiler and wavefront sensor).  There will also be motion 
controls to move diagnostic elements about their central positions or to perform scans.  The signal 
acquisition and processing are handled by the Data Acquisition Component of the Data Subsystem.   

 
Point Detector Processing: The LCLS X-ray beam will initiate either a voltage pulse or current spike 

in the various intensity monitors.  These electrical signals must then be processed using various electronic 
devices such as shaping amplifiers, current preamplifiers, pulse height analyzers, and pulse integrators.  
Once processed the signal must be digitized, stored, and distributed.   

Beam Profiler Acquisition: The beam profiler utilizes a high-resolution monochrome camera to 
capture an analog image of the X-ray induced fluorescence from a scintillating material.  An image capture 
card is required to interface to this device and integrate the captured images into the endstation Data 
Acquisition Component.  This measurement is destructive and thus not necessarily required to be running 
at the beam rate.   

Wavefront Sensor:  The wavefront sensor is traditionally used to diagnose the phase distortion of the 
beam wavefront (see Section 7.2.4.1).  In the current application, it will be used to determine the location of 
the focus after beam demagnification.  The sensor's own control unit will need to be integrated into the 
Diagnostic Component.  The operation of the wavefront sensor is mainly an image recording and 
subsequent image processing, and thus making the sensor primarily a component in the Data Acquisition 
Component and its primary functionality a part of the Diagnostics Component.   

Fast Feedback:  The feedback system for stabilizing the electron beam or the photon beam within the 
confines of the front end enclosure falls under the LCLS control and is described in LCLS CDR [75]  There 
will be, however, a need to stabilize the photon beam at the point of the experiment downstream of the 
undulator in the NEH or the FEH. In the latter case the need is even more pronounced given the large 
distance from the source to approach 500 m, which by its own virtue will provide far better positional and 
angular sensitivity.  For example, experiments that require irradiation of a fixed sample point (e.g., 
diffraction from an individual microstructure) require the stable positioning of the beam to within 10% of 
its diameter, making beam stability an important consideration in instrument design.   

 
Factors contributing to positional beam jitter or drift at the sample plane might include the following: 

(1) power supply and other component fluctuations in the gun-to-undulator system, (2) phase shifts in linac 
klystron low-level rf, (3) vibration or positional drift in the linac and undulator structures, (4) vibration or 
positional drift of the X-ray optics system components.  For factors contributing to beam motion that have 
sufficiently long time constants, detection of jitter or drift and their stabilization may be accomplished with 
suitable detectors providing feedback to any of the upstream LCLS system elements that govern beam 
position and direction.  Detection of positional and directional jitter or drift will be accomplished with non-
destructive photon beam position monitors. The output signal of the monitor will be fed back to 
positional/angular controllers of upstream optical components or the electron beam components.   

 
The beam is sampled up to the maximum rate of 120 Hz and a processor uses an algorithm to calculate 

the new settings of a group of actuators.  For transverse feedback the measurement is made with beam 
position monitors (BPMs) and corrected with magnetic steering coils driven from small power suppliers.  
Longitudinal feedback uses beam energy determination from BPMs and bunch length from fast monitors to 
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control the amplitude and phase of the RF.  A tentative timing budget consists of 1ms to read and convert 
the beam parameters, 1ms to send the information to the fast feedback controllers, 1ms to compute and set 
the new settings, and 5 ms for the new values to settle. This is all driven from the estimate that the actuators 
take 5 ms to settle.  These response times imply the use of dedicated networks such as the SCRAMNet, or 
networks known to have limited traffic, in order to guarantee a deterministic response.   

 
Safety and Protection Systems:  The safety and protection systems for LUSI will be an integral part 

of those for LCLS.  LUSI instruments will only use the Personal Protection System of the LCLS and will 
have no implementation responsibilities.  The Machine Protection System for LUSI instrument will be 
identical in system design and implementation to that of the LCLS [76].   

 

8.3.5. Fast Timing and Synchronization 
 
Various LCLS timing signals are required to trigger LUSI equipments.  The readout of detectors, firing 

of laser systems, and the initiation of pulsed power supplies are examples of events that require an 
instigating electrical signal that is synchronized to the LCLS X-ray beam.  The triggering provide by LCLS 
timing triggering system [74] will deliver timing signals that are synchronized to the LCLS Low Level 
Radio Frequency (LLRF) with an rms timing jitter of 2 ps and long term stability of 20 ps. The system is 
specified to have a delay range of 1 sec with a fine step size of 20 ps.  This triggering signal should suffice 
for application such as the synchronization of the 2D detector integration to the arrival of the X-ray pulses.   

 
For applications such the pump-probe experiments, additional and more sophisticated fiber and 

microwave timing instrumentation is necessary for synchronization, as well as test and measurement of the 
level of synchronization.  These instruments require synchronization of the X-ray pulse with that of a pump 
stimulus, such as an ultra short laser pulse.  Precise synchronization of the laser system with the LCLS is 
achieved by phase locking the laser pulse train to the LLRF clock signal.   

EO Sampling Measurement Apparatus: The timing synchronization applications involve using the EO 
Sampling Apparatus and the Fiber Distribution Network which distributes a RF signal that is phase 
stabilized to 10 fs (see Section 7.2.5).  The EO Sampling Apparatus includes an EO sampling laser, CCD 
camera, a fiber receiver interfacing to the fiber network, and EO sample translator, etc.  For 
synchronization, the EO sampling laser, and the pump laser for the pump-probe experiments will all be 
phase locked to this RF signal, thus achieving temporal resolution limited only by how well the phase lock 
and the intra-bunch timing jitter in the SASE process.   

 
Laser Control and Safety System:  The XPP Instrument will definitely use a pump laser for the pump-

probe experiments.  The pump laser system consists of a Ti:Sapphire oscillator, regenerative amplifier, 
optical parametric amplifier (OPA) and a multi-pass power amplifier (see Section 3.2.4).   

 
Laser Control: Motion controls are required to control the various motorized optical components for 

the XPP laser system.  The three categories of components are linear stages, rotational stages, and 
motorized mirror systems.  Image capture electronics are required to interface to analog CCD cameras that 
will be used to image a small fraction of the laser beam obtained from a beam splitter. The positional 
information obtained from the cameras will be used to drive the motorized mirror systems to create a 
positional feedback loop.   

Laser Safety System: The XPP laser system will be categorized as a class IV laser system.  
Accordingly, a safety interlock system will be implemented in the XPP end station and the laser laboratory. 
The interlock system will control various laser shutters and will integrate with the internal safety controls 
of the commercial laser systems that comprise the XPP system.    
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Figure 8-7.  Layered Model for Data Subsystem. 
 

8.4. DATA SUBSYSTEM 
 
Unlike experiments performed at 3rd generation or older X-ray sources, those that have been 

envisioned and planned at LCLS will put the data acquisition and management in a quite different 
perspective due to the high raw data rate and potentially large volume of accumulated data.  As such, a 
separate Data Subsystem based on EPICS as well as a data acquisition and management platform must be 
designed and implemented to meet the challenges to seamlessly integrate it into the Control Subsystem 
described in Section 8.3, and the existing SLAC data farm system and computer clusters housed at SCCS.   

 
The Data Subsystem will be based on a layered architecture as shown in Figure 8-7 with high level 

applications and functionalities being the top most layer, the communication networks being the bottom 
layer for executing network primitives, and in between the middle layer of functional blocks for performing 
specific tasks such as acquiring data from a PIN diode, or grabbing an image from a CCD camera.  It is 
responsible for the acquisition, storage, analysis, rendering, archiving, and retrieving of all experimental 
data.  It will be responsible for all controls in so far as experimental measurements are concerned by calling 
services from the Control Subsystem.   

 

8.4.1. General Requirements 
 
There will be different kinds of detectors used for the three instruments, with the 2D pixelated X-ray 

detectors being the most significant in terms of generating experimental data.  The general requirements for 
the Data Subsystem will be largely based on the 2D detectors.  Other signals such as those from Si diodes, 
for example, will not be discussed in any details.   
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Year Average 
(in 2009) Lower Limit Upper Limit 

Rep Rate 
 (Hz) 120 120 120 

Detector Size 
(Megapixel) 1.16 1.16 1.16 

Intensity Depth  
(bit) 14 14 14 

Peak Rate  
(Gigabit/s) 1.95 1.95 1.95 

Success Rate 
 (%) 10% 5% 100% 

Ave. Rate  
(Gigabit/s) 0.20 .097 1.95 

Daily Duty Cycle 
(%) 25% 10% 100% 

Accu. for 1 station 
(Terabyte/day) 0.53 0.11 21 

Yearly Uptime 
(%) 25% 10% 100% 

Accu.  
(Petabyte/year) 0.048 0.0038 7.7 

3 yrs lifetime 
 (Petabyte) 0.14 0.012 23 

 
Table 8-1.  Projected data rates and accumulation for CXI instrument. 

 
Front End Data Flow:  Peak Raw Data Rate and Volume - All first experiments for CXI, XPP, and 

XCS instruments will produce 2D scattering/diffraction images using megapixel pixelated detectors 
currently under development, which permit the detector readout rate to be synchronous with the X-ray 
pulse repetition rate, which is slated to run at 120 Hz.  Table 8-1 shows the projected data rate and 
accumulation for the CXI experiment described in Chapter 4 in 2009 when LCLS will start operation, 
including the lower and upper limits.  For the XPP and XCS experiments the rates and volumes are very 
similar with higher average data rates due to lower frame rejection rates.   

 
The peak rate at 2 Gigabit/s is quite high even comparing with that of the BaBar experiment after the 

triggering electronics layer.  If only minimal real-time processing, such as data reduction or compression, is 
performed, the average data generation rate for the entire duration of the measurement, which may be 
minutes, hours, or days, is determined by the success rate of the images.  For the CXI, the success rate is 
the percentage of good images from only one single molecule scattered by the X-ray pulse that actually 
lased; whereas for the XPP or XCS, the percentage is simply the percentage of the lased pulses, thus higher.  
The high average rate combined with the potential long duration can generate upwards of a few Terabytes 
of raw data per day.   

 
The high peak rates and large total accumulation are the driving parameters for the design of the LUSI 

Data Subsystem.  The high rate at prolonged duration will require an acquisition system that can handle this 
rate in terms of getting data off the detector and getting them onto a storage device, with a multi-Gigabit/s 
transmission rate that is sustainable and reliable and a large on-line data storage system with comparable 
write speed and a capacity of tens of Terabytes.  Such a system will need computing resources comparable 
to those for the high energy physics experiments such as BaBar.  Specific requirements for the data 
subsystems are as follows.   
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Real-Time Processing - Given the potential large data volume, it is important to perform real-time 
screening and processing to the extent possible.  Real-time screening/rejection is often times very 
straightforward such is the case when the FEL beam did not lase and the resultant image is essentially 
unusable.  The feasibility of real-time processing depends largely on the type of processing that needs to be 
done and done within the intra-pulse duration of 8.3 ms.  Due to the intrinsic fluctuations in the FEL SASE 
process, each X-ray pulse is an different measurement, averaging different measurements needs the help of 
diagnostic signals such as intensity, beam positions, etc.  In case of XPP, simple binning based on time 
delay between the pump laser pulse and the probe X-ray pulse should be possible; whereas for the CXI 
experiments, the classification and averaging of diffraction images of different orientation may present 
significant challenges.  The simple screening will be done by Field Programmable Gate Arrays (FPGA) 
collocated with the detector control electronics, whereas more complicated real-time processing will be 
done by  processing farm nodes which have much higher computing power and are more flexible in terms 
of algorithm implementations.   

Quick-View Rendering - When real-time rendering and visualization is needed, the corresponding 
computer node must be capable of processing and displaying tens or even hundreds of data frames as they 
are being collected for on-the-fly data exploration or assisting alignment at a display speed of 5 frames/s.  If 
averaging is necessary, the diagnostic signals must be used to properly process the frames; whereas for 
simple viewing of the beam position on the detector, only certain frames can be displayed by skipping other 
ones.   

 
On-Line Storage - Depending on the degree of buffering in the front end of the acquisition system, the 

processed data will be streamed into the on-line data storage system either synchronously or 
asynchronously, but the average throughput must meet the requirement set by the readout rate of the 
detector and the data reduction ratio.  The architecture and implementation must be flexible, scalable, and 
upgradeable, and minimal data loss of less than 0.1%.  It must have enough capacity for data collection of 
an extended period of one week to reduce its dependency on the availability of the permanent data farm in 
SCCS.  Data in the on-line storage should be mirrored in real-time to a mirrored system in a load-sharing 
configuration.   
 

Data Archiving and Retrieval:  Once generated, the potentially large volume of data will be 
transmitted from the on-line temporary storage system to a permanent data farm system based on the tape 
or other cost effective technologies for storage, archiving, and subsequent retrieval.  Coexisting with the 
long-term storage is a server system comparable to the front end temporary system for loading the data 
from the tape system, and for keeping the data sets available to analysis clusters during the offline 
processing.  There are a few requirements on the content and format of the stored data.   

 
Pulse Tagging:  The image data for the experimental measurement will be uniquely tagged on a pulse 

by pulse basis, and this tag will be used as the key for retrieving meta-data associated with a particular 
image frame.  The tag could simply contain the time stamp at the required 120 Hz repetition rate.  
Likewise, for the accelerator system logging, the same tag can be used for pulse identification, along with 
e-beam characteristics.   

Meta-Data Storage:  There will be two different approaches to deal with the pulse-wise meta-data 
associated with the electron and photon beam.  The first approach stores the accelerator data, such as the e-
beam positions, bunch characteristics, etc, in a separate file system keyed by a tag or pulse identification 
number; while the experimental image data is stored in a different file system.  The image frame and its 
associated meta-data are only linked logically by the tag and only the tag.  This approach is especially 
useful when the set of meta-data is very large in size, and can reduce the overall image size.  A second 
approach has a self-contained data format that includes a pre-determined set of meta-data in each frame of 
experimental data.      
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Data Format:  At the experimental run level, parameters such as date and time and station ID can be 
combined for use as file identification.  Within each run file, the frame images will either have a pulse tag 
or a full set of pulse meta-data.  If only a tag is included, meta-data will be queried using the pulse tag log 
file archive.  The experimental data file content can be either the raw pixilated data, or processed 
information in preferably self-describing file format.  The system that was developed by the BaBar project 
for organizing its event data could be ported over to the LUSI data system, although there is the clear 
distinction between HEP and BES experiments that there are many more separate experiments for BES 
rather than one single giant experiment with world-wide collaboration of thousands of scientists.   

 
Backend Data Flow:  At the backend and offline, large data sets of potentially 105 to 107 frames for 

the CXI experiments will be retrieved from either the on-line storage system or the permanent storage farm 
and processed to produce much reduced Gigavoxels volume sets for image reconstruction.  Other 
experiments will retrieve much smaller data sets in the order of thousands of frames.  The requirements on 
the backend are as follows: 
 

Offline Data Storage - The data farm system in SCCS is shared by the high energy physics community, 
as well as the astronomy physics organizations.  To facilitate the offline analysis of the LUSI experimental 
data, a separate offline storage system will be beneficial especially when large volume sets are needed.  The 
on-line storage system can not be used for this purpose as new data are being collected and stored on it.  In 
the early years of the LCLS when yearly uptime is quite low, the on-line system will be sufficient and the 
offline system will not be put in place immediately.  When the yearly uptime begin to turn up, a separate 
offline system will become necessary.   

Offline Processing - The most computational intensive experiment is the CXI, where the processing 
includes identifying and averaging diffraction patterns of like orientations, alignment of the averaged 
patterns with respect to each other to form a 3D volume set, which is ultimately converted to a 3D real-
space structure.  Each of the steps may require a large number of FLOPS on the order 1017.  It has been 
shown that the completion of the reconstruction alone will take several hours on a 32 single-core processor 
cluster.  To reduce the computation time to less than a few minutes for a quicker turn-around will require a 
cluster with thousands of processors.   

 
Volume Rendering - At the backend, volume rendering and visualization of large volume data sets is 

also needed; the corresponding computer node must be capable of processing Gigavoxels volume sets and 
displaying at speed of 5 frames/s.  This requires a computer node with a large RAM space of tens of 
Gigabyte and the processing power of roughly a single workstation.  The visualization node needs to have 
power graphics card and large enough memory.   

 

8.4.2. Data Acquisition Architecture 
 
The overall architecture of the Data Subsystem is schematically shown in Figure 8-8.  It is divided in 

the on-line system and the offline system.  The on-line system operates on the EPICS platform for slow 
controls of the optical and experimental elements such as the diffractometer, and uses the data acquisition 
system for generating experimental data and storing them on a pulse by pulse basis.  The per pulse 
operation uses separate network infrastructure in the form of SCRAMNet and EVG/EVR in conjunction 
with the EPICS network.   The data links to and from the detector and the storage are separate dedicated 
connections of high bandwidth.  The major hardware components are: 

(1) Detector control node 
(2) Quick rendering node 
(3) Detector interface board 
(4) On-line cluster for real-time analysis within 8 ms 
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(5) On-line data sever and storage  
(6) Network gears including networks, routers/switches 

 
 

Figure 8-8.  Data Subsystem Architecture. 
 
 The offline system is responsible for backend data management and data analysis.  It serves as the 

gateway to other laboratory data resources such as the SCCS such as the large computing clusters, the tape 
archiving systems, and the managerial expertise that are associated with the data management.  From a 
logistical point of view, LUSI will not take on the management of the computing hardware that require 
large amount of power or air conditioning, or replacement, etc, nor will it try to manage the data in terms of 
replication and persistency, which should be completely transparent to the experimental users.  The major 
hardware components include: 

(1) Tape drive/data server for long term achieving 
(2) Offline cluster for offline analysis 
(3) Offline staging storage  
(4) Volume rendering node 
(5) User portal for graphics display for large data sets.   
 

8.4.3. Experimental Measurement Application 
 
The topmost layer of the Data Subsystem is the application layer shown in Figure 8-9, which facilitates 

the experimental controls for taking measurements by running detectors, measurement instruments, and 
other controlling devices such as temperature controllers.  The experimental controls will perform 
measurements using software specially written for the LUSI instruments in case of the CXI experiments or 
by porting diffraction software such as SPEC in case of the XPP instrument [77].  The porting of the SPEC 
or other exiting programs will be implemented on a high-level application frames with well defined API’s 
that call functionalities from both the Control Subsystem and the Data Subsystem.  The specific software 
development includes: 

 
 

Detector 
Control 
Node 

Quick View  
Rendering Node 

On-line Node 
(Disk Arrays/ 
Controller) 

Tape Drives/ 
Robots 

Volume 
Rendering Node 

10/100 Gbit/s  
Network  
Infrastructure 

Offline 
Cluster 

ADC FPGA 

On-line 

Data 
Server 

SSCCCCSS LLUUSSII//LLCCLLSS 

Offline 

Data 
Server 

2D Detector 

Analysis Node 
(Disk Arrays/ 
Controller) 

Online 
Cluster 

Offline 
Analysis Node 

WWoorrlldd 

 
 

SCRAMNet 

 
 

EVG/EVR 



C O N C E P T U A L  D E S I G N  R E P O R T  
______________________________________________________________________________________ 

C O N T R O L S  A N D  D A T A  S Y S T E M S    8-17 

 
 

Figure 8-9.  Block Diagram of the Experimental Control. 

In-House Application Development:  Use EPICS standard sequencer for developing measurement 
sequences to provide users with: 

(1) Configuration routine for configuring the system, detectors, etc. 
(2) Calibration routine for calibrating detectors 
(3) Alignment routine for aligning optics such as mirrors, monochromators, etc. 
(4) Data measurement routine for taking experimental data 
(5) Logging routines for logging instrument operation such as temperature monitoring, etc.   

Porting of Existing Applications:   Use in-house developed Application Programming Interface 
(API’s) to interface with legacy software such as SPEC to run diffraction measurements or MatLab analysis 
packages for routine data analysis or graphics: 

(1) Diffraction experiments in various q scans, truncation rods in two-dimensional diffraction 
measurements. 

(2) Non-linear least square fitting  
(3) FFT calculations 
(4) Graphical display of results 
(5) Correlation calculations. 
 
Interface to EPICS Controls:  The motion controls that are needed in the experimental control 

functionalities described above will be carried out by the corresponding components in the Control 
Subsystem.  The measurement applications can execute motions of certain elements but should be 
transparent to the details of the control architecture and implementation such the types of motors or stages 
that are used.   

 
On the other hand, the controls and operation of the detectors including the 2D pixelated detectors, 

mass spectrometers, e- and ion TOF analyzers will be done by the Data Acquisition and Management 
Components.  Depending on the mode of operation as to whether or not measurements are made on a pulse 
by pulse basis, and the data rates of the detectors, the data acquisition and management will follow different 
data flows to achieve optimal performance.  Simple alignment procedure may involve data being taken and 
saved onto local hard disk on the controlling console rather than being streamed onto the on-line storage 
and subsequently onto the data farm. 
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8.4.4. On-Line Data Acquisition 
 
There are two options in selecting the data acquisition, management, and analysis equipment and 

technology.  There is the approach of using as much commercially available products as possible to 
leverage industries needs for continuing development and improvement, and their readily availableness, 
and the option to use equipment and components that are developed in-house or other scientific institutions 
in the case of the 2D detectors, where none of the available commercial devices will meet the requirements 
put forth by the proposed LUSI experiments, or the molecular injector for the CXI Instrument being 
developed by Lawrence Livermore National Laboratory under a MOU.   

 
2D Pixelated Detectors:  There will be three separate 2D detectors supplied by two vendors through 

MOU’s, as listed in Table 3-3 and Table 5-3 with their key attributes.  The detectors were designed to 
optimize their performance for the intended experiments, and their details are described in their relevant 
experimental sections.   

 
The high repetition rate represents a significant challenge to the 2D detector technology available 

today.  Most commercial X-ray 2D detectors are limited in the readout speed to about a few Hz for 
magepixels CCD or CMOS based devices, which is about two orders of magnitude too slow for the 
proposed LUSI experiments.  The key matrices for the required detectors are sizes in total number of pixels 
and individual sensing element, dynamic range, signal-to-noise ratio, quantum efficiency as a function of 
X-ray energy, and finally dispersion if possible.   Other fast detectors are being developed at DESY for the 
European XFEL where even faster data rates are possible.   

 
Detector Controls:  The detectors will be controlled from the experimental console by invoking the 

functionalities of the Detector Control Component, which perform tasks such as Configuration, Calibration, 
and Operation (start, stop, abort, etc.), etc. for more sophisticated detectors such as the 2D pixelated 
detectors, the CCD’s. etc.  For all other simpler detecting element, the controls are very straightforward and 
most consisting of digitizing the analog signals coming off them.   

 
Common Front-End Interface to 2D Detectors: The fast data rates and high accumulation volume 

make it imperative that the design and implementation of the data infrastructure down stream of the 
detectors be relatively stationary and independent of the detector’s design, and thus capable of the so-called 
plug-n-play interconnectivity.  This requirement lends credence to the architectural abstraction of a front-
end interface board that works as an adaptor to the detector, making the detector behave exactly the same to 
the rest of the system.   

 
Backend Interfaces:  The front-end board will interface with the quick-view rendering node for real-

time display of the measurement data, stream data to the on-line storage, and receive diagnostic 
measurement signals form the Diagnostic Component for meta-data.  This front-end interface board can 
either be a commercial product or an in-house development such as the CEM module being developed by 
the Electronics Group at SLAC for the LSST project [78].  The CEM board will have large on-board 
processing power for real-time data reduction, as well as fast to memory access which may be crucial in 
certain types of real-time processing such as classification in the CXI experiment.   

 
Quick View Rendering:  To help commission and perform experiments, real-time feedback on the 

beam itself provide invaluable information on the photon beam characteristics especially for X-ray FEL 
beams where intrinsic jitter occurs in the SASE process that will result in positional and angular shifts from 
pulse to pulse.  To facilitate the visualization of that shifting beam, a quick rendering node will be built.  
Moderate graphics capability and RAM space will be required to store and process tens or hundreds frames 
and have them rendered and displayed at 5 frame/s rate.  This dedicated workstation can be a standalone 
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unit to reduce its interference with the data acquisition station where processing power may be of great 
importance for handling real-time data management.   

 
Real-Time Processing:  The real-time processing will be based on the requirement that the system 

should be ready to deal with the data on per pulse basis, i.e. the latency of the processing should be less 
than 8.3 ms at most.  For all likelihood, 5 ms or shorter should be used for calculating the latency budget.  
There are several types of real-time processing: 

(1) Rejection/vetoing:  Of measurement data that are the result of non-lasing FEL beam, or X-ray 
pulse missing the sample, etc. 

(2) Frame Correction:  Based on detector characteristics, dark-current, non-uniformity in amplifier 
gains are corrected once the frame is deemed good. 

(3) Normalization:  Based on diagnostic signals to remove effects from fluctuations in incident beam 
intensity, variations in wavelength due to that in e beam bunch, positional and angular jitter.   

(4) Transformation:  Transform data into its counterpart in the Fourier Space using FFT. 
(5) Running Averaging:  Average frames based on a set of parameters such as timing delays in XPP 

or XCS experiments. 
(6) Calculation of Experimental Result:  To extract experimental results by calculating the final 

physical parameters such as that is done in an auto-correlator for the XCS experiments.   
(7) Classification of Like Frames:  Specific to the CXI experiments whereby frames of diffraction 

patterns from molecules of similar orientations are identified and averaged.   
 
The possibility of carrying out these real-time processing largely depend on the type of algorithms, 

which in turn impacts the architectural design requirement on the real-time processing node in terms of 
optimizing memory capacity and access bandwidth, CPU power, and I/O bandwidth.  It is possible to build 
the real-time processing farm or cluster using the CEM modules as the nodes.  Other approach will be using 
cluster technology with off-the-shelve components in processors, networking gears, and firmware for inter-
processor communications.   

 
Data Streaming and Content:  The format of the data depends on whether real-time processing is 

performed or not, and on what kind of processing.  If no processing is performed, a serial bit stream will be 
the most efficient transfer mode, whereas if sparsification is rendered on the raw data, coordinates of the 
pixels with intensities must be included as well.  Additional meta-data describing the e-beam and photon 
beam characteristics will be embedded in the data stream as well on a pulse-by-pulse basis.  The peak rate 
for a 1 megapixel/14 bit 2D detector will approach 2 Gbit/s.  This rate must be sustained for the entire 
duration of the measurement.  More than one measurement may be needed to complete a run, in which 
case, the date, time, measurement sequence, run ID will also be stored in some preconceived data format.  
The design of the file header is extremely important for data management in terms of archiving and 
retrieving efficiency.   

 
Fast On-Line Storage:  The fast on-line but temporary data storage is needed to off load the data 

stream coming off the detector at a very high peak rate of  > 1 Gbit/s for even a 1 megapixel 14 bit 2D 
detector.  The technology will necessarily have the write speed that is comparable to that of the detector 
and sustainable, which can be realized by using disk arrays running on Fibre Channel protocol [79].  The 
complete storage system will have two subsystems residing in the NEH and the FEH, each having its own 
drives and Gbit/s switch to support the entire experimental hall.  The two subsystems are connected to act 
as the backup for its counterpart in the event of system failure.  To reduce the risk of data loss due to single 
disk failures, a RAID-5 [80] configuration will be used.   

 
Commercial Solution:  The data storage network for the on-line data management will be based on the 

Storage Area Network (SAN) technology with Fibre Channel connectivity [81].  The major components of 
the SAN configuration will include: 
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(1) Multiple Storage Servers, 
(2) Disk Arrays with RAID 5 configuration, 
(3) Fibre Channel Host Bus Adaptors (HBAs), 
(4) 4Gbit Fibre Channel switches. 
 
The BaBar On-line System: An alternative approach has to do with the very successful high energy 

physics programs at SLAC, for which data acquisition and management systems have been also 
successfully developed in house by SLAC technical staff to address the very challenge that LUSI is facing 
in the case of the 2D detectors, that an proprietary system developed outside of industry is the only one that 
meets the technical requirement of the scientific programs.  This approach will entail porting and tailoring 
existing high energy physics systems for LUSI implementation.  This approach also has offer the advantage 
of having available to the LUSI project the data acquisition and management system expertise existed in 
house at SLAC.   

   

8.4.5. Offline Data Management and Analysis 
 
The total capacity of the temporary storage provided will be sufficient for storing data for a few days at 

most, thus requiring a semi real-time transfer to a data farm for longer term storage, archiving, and 
subsequent retrieval.   

 
Long Term Archiving and Retrieval:  Long term mass storage for data archiving and retrieval must 

provides data persistency and fast access.  Such a storage facility will be equipped with a large number of 
fast disk arrays as well as high density tape drives, and will have capacity in excess of a few Petabyte and 
provide high throughput access compatible with the data generation rate at LCLS, which will approach 100 
terabyte per day when multiple endstations are running concurrently.  This mass storage should be 
completely transparent to the end users as to how and where his/her data is stored, and the only thing that 
the user must provide in order to access his/her data is an unique file identifier which is defined in a global 
naming space to which the mass storage serves.  The file identifier is a key attribute of a data file system 
used by the mass storage for high-availability, fast access speed, and efficient data management.  This mass 
storage system will be an extension to the existing SCCS of SLAC, whereas the data file system may be a 
newly designed one to meet the LCLS specific needs or a modified implementation based on an existing 
system such as the Object Database [82].  The mass storage system used by LUSI will have the following 
hardware and software components: 

(1) Access Disk Servers for receiving data stream from the on-line storage and loading them onto the 
tape drives.  Dedicated servers maybe needed to minimize conflicts with HEP experiments and 
other data intensive experiments.   

(2) Permanent Tape Drives for long term safekeeping of the data.  If persistency and redundancy are 
required, data mirroring, verification, and recovery will be implemented.   

(3) Data File System for effectively organize LUSI experimental data.  XrootD [83]may be used since 
it was proven to be very successful for BaBar data system.  New data schema will be designed to 
meet LUSI specific needs. 

(4) Data Access for users to perform analysis or simply retrieve the data.  A staging storage farm will 
be needed for hosting analysis, especially for the CXI data sets, which may exceed 20 TB per set 
of 10 million frames of 1 megapixels.  Policy and security are two important attributes for the 
LUSI data, because of the relatively smaller size of the collaboration in the X-ray community.   

 
Off-line Analysis and Visualization:  The LUSI Data Subsystem in conjunction with the SCCS 

computing infrastructure will enable additional capabilities other than data storage, namely data analysis.  
The analysis system will include the following hardware and software components: 
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(1) Multi-Processor Cluster for computational intensive analysis such as the phase-retrieval of the 
CXI experimental measurements of single molecules.  This offline cluster should have enough 
computing power to render any given phase-retrieval algorithm within 1 hour.  Simple 
extrapolation of exiting cluster at LLNL for similar purpose would suggest the size of the cluster 
to be on the order of 500 processors.   

(2) Volume Rendering Node for rendering 10003 voxels data sets in a few minutes.   
(3) Visualization Node for displaying the rendered results in preferably 3D manner.  It will require 

powerful graphics capability.   
 

8.5. REFERENCES 
 
[69] See, for example, http://www.aps.anl.gov/epics/.  
[70] "LCLS Conceptual design report-1", Chapter 11 (2003). 
[71] Reflective memory, or replicated shared memory, systems are designed for ultra-low latency real-

time applications with critical performance requirements.  A specific example is the SCRAMNet 
network products.   

[72]  “LCLS Timing System Requirements”, LCLS Physics Requirement Document.   
[73] See, for example, R. B. Wilcox, J. W. Staples, L. R. Doolittle, “A fiber optic synchronization 

system for LUX”, in http://repositories.cdlib.org/lbnl/LBNL-55661.  
[74] “LCLS Timing Triggering System“, LCLS Engineering Specification Document. 
[75] See, 

http://www.slac.stanford.edu/grp/lcls/controls/global/architecture/presentations/LCLS%20PPS%2
0Intro_20050103.ppt.  

[76] See, http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/mps/.  
[77] See, http://www.certif.com/spec.html.  
[78] Gunther Haller, private communications. 
[79] See, for example, http://www.fibrechannel.org/technology/overview.html 
[80] See, for example, http://en.wikipedia.org/wiki/Redundant_array_of_independent_disks. 
[81] See, for example, http://en.wikipedia.org/wiki/Storage_area_network. 
[82] Steffen Luitz, Private communications. 
[83] See for example, http://xrootd.slac.stanford.edu/papers/Scalla-Intro.pdf.  
 
 





 

 

999 ---   EEENNNVVVIIIRRROOONNNMMMEEENNNTTT,,,   SSSAAAFFFEEETTTYYY   &&&   HHHEEEAAALLLTTTHHH   

 
 

9.1. INTRODUCTION
 
It is SLAC's policy and objective to integrate safety and environmental protection into its management 

and work practices at all levels, so that its mission is accomplished while protecting the worker, the public, 
and the environment. To achieve this objective, SLAC has developed and implemented an Integrated 
Safety Management System plan (ISMS), required by DOE P450.4, Safety Management System Policy, 
which encourages and supports the use of: the Work Smart Standards process, development of measurable 
goals in the form of performance metrics, and uses existing programs and activities that have been deemed 
successful and which already incorporate the ISMS elements. (ISMS as a required element is implemented 
through the incorporation of a contract clause from the DOE Acquisition Regulations (DEAR), specifically 
DEAR 970.5204.-2, “Integration of Environment Safety and Health Into Planning and Execution”. This 
clause was incorporated into the contract between DOE and Stanford University for operation of SLAC in 
February 1998).   

 
Fundamental to the ISMS process is the application of Guiding Principals (GPs) and Core Functions 

(CFs). GPs are a series of best management practices or “basic philosophy” that ensure start-to-finish 
management of ES&H issues. CFs provide the necessary structure that describes the scope of work, 
identifies and analyzes the hazard, develops and implements hazard controls, allows work to be performed 
within the controls, and uses feedback from the work performed to improve the safety system. 
Responsibility for achieving and maintaining excellence in this system rests with line management, who 
implement the SLAC ES&H policy with the personnel under their supervision.   

 
Existing and mature programs at SLAC will be used to ensure that all aspects of the design, 

installation, and testing phases of the project are properly managed. The LUSI project will be presented to 
the SLAC Safety Overview Committee, which coordinates and assigns safety reviews for new projects or 
facility modifications to other citizen committees, which have knowledge or skills in a specific area. The 
hazards for the LUSI may require reviews from such committees as: Radiation Safety Committee, 
Electrical Safety Committee, Earthquake Safety Committee and the Fire Protection Safety Committee.   

 
At SLAC, the LUSI project will not generate any hazards that have not already been defined and 

addressed within the Work Smart Standards and will not present any significant challenges from the ES&H 
perspective. All aspects of the project will conform to the applicable Work Smart Standards SLAC has 
adopted and written into its contract with the DOE. Appendix A identifies the potential hazards, causes, and 
mitigating controls that the LUSI project may encounter. A complete list of SLAC’s Work Smart Standards 
that have been included in its contract with DOE may be found at  
www.slac.stanford.edu/esh/reference/worksmart.htm.  
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9.2. IONIZING RADIATION 
 
The design and operation of all radiation-producing facilities at SLAC are governed by the ALARA 

(as low as reasonably achievable) policy. SLAC has always maintained radiation dose limits below the 
maximum allowed by regulation.   

 

9.2.1. Radiation Shielding 
 
Shielding for the LUSI will conform to the Radiation Safety Systems Technical Basis Document, 

Chapter 1 Radiological Guidelines for Shielding and Barriers (SLAC-I-720-0A05Z-002). Under normal 
operation the design criterion will be (i) 1 rem/yr at 30 cm from the shield surface, assuming a 2000 hr 
working year and an occupancy factor of 1. In addition the LUSI will have non-radiological workers 
(Users); additional shielding may be required to maintain their annual effective dose equivalent below 0.1 
rem/yr taking exposure duration and occupancy factors into account. SLAC internal design criteria also 
requires that under a system failure (ii) the total effective dose equivalent shall not exceed 3 rem for a broad 
beam and 12 rem for a narrow beam, and that under an accident scenario that requires human intervention 
to turn off the beam (iii) the maximum dose equivalent shall not exceed 25 rem averaged over a 1 hour 
period for broad beam exposure or 100 rem averaged over 1 hour for narrow beam exposure.   

 
An analysis of the present shielding indicates that potential beam losses from the LCLS during 

operation could produce high radiation doses. Local shielding, in some cases movable, will be used to 
mitigate these hazards to acceptable values. Defining the type and amount of local shielding is dependent 
on the final configuration of the LCLS for the experimental halls and experimenter hutches. Installation of 
radiation loss monitors at the hutches for diagnostic capabilities may be used to determine where beam 
losses are taking place. Adding this monitoring package in addition to the Beam Containment System 
(BCS) will further help maintain dose levels below those limits allowed at SLAC.   

 

9.2.2. Personnel Protection System 
 
The personnel protection system (PPS) consists of electrical interlocks and mechanical barriers whose 

primary functions are to prevent entry of personnel into a beamline enclosure when prompt radiation and 
electrical hazards are operating, and to turn off the beam, RF, and electrical hazards when a security 
violation is detected. Other functions that it must also accomplish are: (i) provide interlocks for the orderly 
searching of an area before beam is turned on, (ii) allow for various access states, such as No Access, 
Controlled Access or Permitted Access, (iii) have emergency shut-off capabilities, and (iv) control the 
electrical hazards in beam housing areas. As installation of the LUSI instruments will not require a 
significant change to the present shielding footprint, the PPS will undergo only necessary upgrades and 
enhancements to address the instruments. These upgrades include: additional status and control interfaces 
to accommodate new power supplies, access control modules for the injector and experimental areas, logic 
upgrades, and interlocks with beam stoppers, Beam Shut Off Ion Chambers (BSOICs), and those burn-
through monitors that are controlled through the PPS. The PPS will remain largely the same in terms of its 
design, function, and configuration as other PPS to installations used at SLAC and LCLS, and all additions 
will conform to the Radiation Safety Systems Technical Basis Document, Chapter 2 Personnel Protection 
Systems (SLAC-I-720-0A05Z-002).   
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9.2.3. Beam Containment System 
 
The Beam Containment System (BCS) prevents accelerated beams from diverging from the desired 

channel, and detects excessive beam energy or intensity that could cause unacceptable radiation levels. 
Beam containment is usually accomplished by a combination of passive devices such as collimators, which 
are designed to absorb errant beams, and active devices such as electronic monitors that shut off the beam 
when out of tolerance conditions are detected. The present BCS in the Linac consists of passive mechanical 
devices (such as slits, collimators, magnets, electron beam stoppers, and dumps) and active electronic 
devices such as average current monitors, burn through monitors, and beam shut off ion chambers. 
Additionally the LCLS will install photon stoppers, ion chambers, and burn-through monitors for the 
proposed beamlines. Gas absorption cells are planned to be installed in critical places, for attenuating the 
beam as needed.   

 

9.2.4. Radiation Safety Training 
 
In accordance with SLAC's Site Access and Identification Badges Policies and Procedures (SLAC-I-

720-0A0Z-002-R001), all individuals at SLAC who enter the Radiologically Controlled Area (RCA) or the 
Accelerator Area must be either properly trained or escorted by a properly trained individual. Levels of 
training depend on the area to be accessed and in some cases the duration of the individual’s stay (see Table 
9-1).   

 

Required Training Level Dosimeter 
Access 

Required 

Duration 
of 

Access 

Potential 
Dose 

(mrem/yr) Safety 
Orientation EOESH GERT RWT I RWT 

II None Annual Quart 

Industrial 
Areas, 

Accelerator 
Area - No 

RCA 

< 60 
days 

(within a 
yr) 

0 x     x   

Industrial 
Areas, 

Accelerator 
Area - No 

RCA 

< 60 
days 

(within a 
yr) 

0  x    x   

Accelerator 
Area RCA's Any < 100  x x    x  

Accelerator 
Area RCA's, 
High Rad. 

Area 

Any Any  x x x    x 

Accelerator 
Area RCA's, 
Cont. Area 

Any Any  x x x x   x 

 
Table 9-1.  Minimum Training Requirements for Unescorted Access. 
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9.3. ELECTRICAL SAFETY 
 
An accelerator facility by nature has subsystems that either produce or use high voltage or high 

current, either of which can present an electrical hazard to personnel if not managed properly. The LUSI 
project will operate in a similar mode to other research facilities at SLAC, control and work procedures for 
electrical subsystems, as well as entry into the accelerator housing are well understood. Primary mitigation 
of the hazard will be through de-energization of equipment, placement of barriers and the effective use of 
Lock Out and Tag Out (LOTO) procedures.   

 
In as much as the design, upgrade, installation and operation of electrical equipment will be in 

compliance with the National Electrical Code, Title 29 Code of federal Regulations, Parts 1910 and 1926 
(as applicable) and SLAC's policy on Electrical Safety, SLAC ES&H Manual, Chapter 8 (SLAC-I-720-
0A29Z-001-R007); entry into the accelerator housing requires the mitigation of electrical hazards through 
either the lockout of power supplies or selective use of mechanical barriers, interlocked to further reduce 
the risk of exposure to electrical shock. Various levels of electrical safety training and LOTO training are 
provided by SLAC for those personnel who may work on or near potential electrical hazards.   

 
Infrequently it may be necessary to complete work on energized equipment. This is conducted under 

very limited and controlled conditions, using qualified employees and where appropriate, under the full 
approval of the SLAC Director.   

 
Special procedures will be developed to permit authorized personnel to occupy areas adjacent to 

energized magnets. These are called Electrical Hazard Test Procedures and allow local control of the 
electrical power supply feeding a single magnet, or unique string of magnets, that are to be tested.   

 

9.4. EMERGENCY PREPAREDNESS 
 
It has been estimated by the U. S. Geological Survey that the chance of one or more large earthquakes 

(magnitude 7 or greater) in the San Francisco Bay area in the coming 30 years is about 67 percent. All 
SLAC personnel are trained in the immediate response to earthquakes and other emergencies via their 
supervisors and employee orientation.   

 

9.5. SEISMIC SAFETY 
 
SLAC structures are designed and constructed to minimize the effects of a major earthquake to 

acceptable levels. The LUSI components will be installed in the new LCLS facility, whose seismic stability 
will be well documented and deemed acceptable by the time installation begins.   

 

9.6. EMERGENCY PLANNING 
 
The design, review, installation and operation of all experimental equipment at SLAC is done in a 

manner that minimizes the risk of accident or injury to personnel and property in the event of either a 
natural disaster or emergency situation. SLAC's formal emergency planning system as described in the 
SLAC Emergency Preparedness Plan (SLAC-I-730-0A14A-001) will help ensure a logical, organized, and 
efficient site wide response to any emergency. Facility specific procedures, which supplement the SLAC 
emergency plan, support a timely initial response, further decreasing the probability of personal injury and 
limiting potential loss or damage to both property and the environment.   
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9.7. HAZARDOUS MATERIALS 
 
During the installation and operation phases of the LUSI it is anticipated that a minimum amount of 

hazardous materials will be used, examples would be paints, epoxies, solvents, oils and lead in the form of 
shielding, etc. There are no current or anticipated activities at the LUSI project that would expose workers 
to levels of contaminants (dust, odors, and fumes) above acceptable levels.   

 
The SLAC Industrial Hygiene Program detailed in the SLAC ES&H Manual addresses potential 

hazards to workers from the use of hazardous materials. The program identifies how to evaluate workplace 
hazards at the earliest stages of the project and implement controls to eliminate or mitigate these hazards to 
an acceptable level.   

 
Site and facility specific procedures are also in place for the safe handling, storing, transporting, 

inspecting and disposing of hazardous materials. These are contained in the SLAC Introduction to Pollution 
Prevention, Hazardous Material and Waste Management “A Hazardous Materials Management Handbook” 
(SLAC-I-750-0A06G-001), and the ES&H Manual Chapter 4, “Hazard Communication” (SLAC-I-720-
0A29Z-011-R012) which describes minimum standards to maintain for compliance with Title 29, Code of 
Federal Regulations, Part 1910.1200.   

 
The UTR or Project Engineer has added responsibilities with respect to the management of hazardous 

materials. They ensure subcontractor personnel are aware of, and remain in compliance with SLAC's 
written Hazard Communication Plan, also keeping affected SLAC personnel informed of hazardous 
material usage and the associated hazards and risks.   

 

9.8. FIRE SAFETY 
 
The probability of a fire during the assembly and installation of the LUSI instruments is expected to be 

comparable to other research facilities at SLAC since components are primarily fabricated out of similar, 
non-flammable materials and combustible materials in general are kept to a minimum. The most 
"reasonably foreseeable" incident or event with any substantial consequences would be a fire in the 
insulating material of the electrical cable plant caused by an overload condition. This differs from the 
maximum credible fire loss, which assumes proper functioning of the smoke detector system and a normal 
response from the on-site fire department. In this case, losses would be confined to isolated components, 
and associated cabling. The ES&H Manual Chapter 12, “Fire Safety” (SLAC-I-720-0A29Z-001-R007) 
address all fire safety issues.   

 
Installation of new cables for the LUSI project will meet the current SLAC standards for cable 

insulation and comply with National Electric Code (NEC) standards concerning cable fire resistance. While 
this reduces the probability of a fire starting, an aspiration type smoke detection system (VESDA) in the 
accelerator housing and fire breaks in the cable trays will mitigate fire travel. Support buildings for power 
supplies, electronic equipment or experimental areas are protected by automatic heat activated wet 
sprinkler systems and smoke detectors. Fire extinguishers are located in the Experimental Halls for use by 
trained personnel. The combination of smoke detection systems, sprinklers and on-site fire department 
(response time ~3 minutes) affords an early warning and timely response to fire or smoke related incidents.   

 
Burn injuries caused by a fire are not expected because nowhere in the Experimental Halls are 

personnel further than 150 ft from an exit and there is no location where two directions of egress are not 
available.  Multiple entry/exit points also helps in keeping property damage to a minimum.   
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9.9. ENVIRONMENTAL PROTECTION 
 
It is likely that the assembly and installation of the LUSI instruments may produce hazardous wastes, 

such as used solvent from degreasing baths or spent cutting fluids. These are ongoing operations at SLAC, 
disposal of wastes is routine, and in full compliance with SLAC's policies on the management of hazardous 
materials and waste minimization.  Any hazardous waste would be disposed of in accordance with SLAC 
procedures and ultimately to a permitted Treatment, Storage and Disposal Facility, under regulations set 
forth in the Resource, Conservation and Recovery Act (RCRA).   

 

9.10. QUALITY ASSURANCE 
 
A Quality Assurance Program Plan (SLAC-I-770-0A17M-001-R001) conforming with DOE Order 

414.1A, “Quality Assurance”, was established at SLAC to provide laboratory management with guidance 
and requirements toward achieving quality in pursuit of the laboratory mission. Overall responsibility for 
the implementation of this program lies with the SLAC Director, while accountability for managing the 
program at the divisional level rests with the respective Associate Director (AD). For the LUSI project, the 
"Project Leader" has been assigned by the Photon Sciences Division Director and given responsibility for 
staffing, documenting, generating Quality Implementing Procedures and implementing the QA program. At 
the project level this includes developing and maintaining required management systems, or using 
management systems that are already available.   

 
The QA plan describes SLAC's approach to implementing the ten criteria of DOE Order 414.1A:  
 

� Criterion 1 - requires specific Quality Implementing Procedures for all SLAC projects where 
total project costs exceed $5,000,000.  

� Criterion 2 - as appropriate defines specific requirements and assures adequate qualification 
and training for individuals connected with the project, including retention of training records.  

� Criterion 3 - defines requirements for management's responsibility with respect to 
identification, analysis, resolution and follow up of ES&H, technical and compliance issues.  

� Criterion 4 - provides policy for identification of documents (policy, procedures, drawings 
etc.), records and other specific elements that will have a significant impact on the project and 
need to be entered into a document control system.  

� Criterion 5 - requires project leaders to define and maintain work processes for R&D efforts 
that have a significant programmatic impact Criterion 6 - establishes a responsibility for line 
management to conduct design reviews and to promote the use of design standards.  

� Criterion 7 - discusses a graded approach to the development of specifications for 
procurement of items and services based on cost and failure impact.  

� Criterion 8 - established responsibility for the staffing, documenting, and performing of 
inspection and testing activities related to the project.  

� Criterion 9 - requires participation in the SLAC Institutional Self-Assessment Program.  
� Criterion 10 - provides the authority for the Quality Assurance and Compliance Department to 

conduct independent assessments of all SLAC facilities and projects as warranted verifying 
the degree of conformance to QA and ES&H requirements.  

 
Effective use of these criteria will enable the LUSI project to:  
 

� Design in quality and reliability.  
� Promote early detection of problems to minimize failure costs and impact on schedule.  
� Develop appropriate documentation to support upgrade and operational requirements.  
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� Establish methods to identify critical systems and to release these systems based on 
demonstrated performance.  

� Define the general requirements for design and readiness reviews for all aspects of the project.  
� Assuring personnel are trained before performing critical activities, especially those that have 

ES&H consequences.  
 

9.11. PROCEDURES AND POLICIES REFERENCES 
 
SLAC Work Smart Standards: 
http://www.slac.stanford.edu/esh/reference/worksmart.htm; 
 
SLAC Safety Management System: 
http://www.slac.stanford.edu/esh/isms/sms.pdf; 
 
SLAC Environment, Safety & Health Manual: 
http://www.slac.stanford.edu/esh/manuals/eshmanual.html; 
 
SLAC Radiation Safety Systems Technical Basis Document (SLAC-I-720-0A05Z-002): 
http://www.slac.stanford.edu/esh/techbas/rss/rss.pdf; 
 
Specification for Seismic Design of Buildings, Structures, Equipment, and Systems at the Stanford 
Linear Accelerator Center (SLAC-I-720-0A05Z-002): 
http://www.slac.stanford.edu/esh/techbas/seismic.pdf; 
 
Lock and Tag Program for the Control of Hazardous Energy (SLAC-I-730-0A10Z-001): 
http://www.slac.stanford.edu/esh/manuals/locktag.pdf; 
 
Electrical Hazard Test Procedures (SLAC-I-040-30460-002); 
 
Introduction to Pollution Prevention, Hazardous Material and Waste Management (SLAC-I-750-
0A06G-001-R001)  
http://www.slac.stanford.edu/esh/training/study_guides/hmh.pdf; 
 
SLAC Emergency Preparedness Plan (SLAC-I-730-0A14A-001): 
http://www.slac.stanford.edu/esh/manuals/epp2000.pdf; 
 
SLAC Institutional Quality Assurance Program Plan (SLAC-I-770-0A17M-R002): 
http://www.slac.stanford.edu/esh/manuals/QAplan.pdf; 
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10.1. INTRODUCTION
 
The Work Breakdown Structure (WBS) is used for defining work packages and tracking the cost and 

schedule for the project. The work is broken down into tasks, each of which has a manager, costs and 
schedule, technical scope, and, to the extent possible, a specific geographic location in the LCLS.   

 
Each level 3 element has a Task Manager who is responsible for the execution of the project plans for 

that element. The Task Manager is responsible for translating system performance requirements into design 
choices for the LUSI instruments. He/she is also responsible for control of cost and schedule, quality and 
safety, and documentation. Performance requirements for systems at level 3 and below will be established 
and advocated by a System Manager. The System Manager advises the Task Manager and LUSI Project 
Management as to whether the LUSI systems will meet specifications necessary for the success of the 
Project. The Systems Manager is primarily an advocate of the performance of each system, with no 
responsibility for cost and schedule. Line responsibility for design choices and execution flows through 
LUSI Management and the Task Managers.   

 
The WBS is used to specify change control. The Project Management Plan specifies the levels of 

approval required for changes in cost and/or schedule at each level of the WBS.   
 
In addition, the WBS is used for cost reporting. The project will report costs and progress to the DOE 

monthly at level 2 of the WBS. The project management will review costs and progress monthly at level 3. 
The System Managers will review costs and progress monthly at the lower levels of the WBS.  

 

10.2. LEVEL 3 WORK BREAKDOWN STRUCTURE 
 
The following describes the scope of work for each of the level 3 elements of the WBS. Each element 

includes design, simulations, documentation, fabrication, testing, and installation of the equipment. 
Commissioning of each instrument will be carried out by LCLS Operations.   

 
 
1 LUSI Project 
 

1.1 Project Management.  This section of the WBS identifies the technical and administration 
management of the project, establishment and operation of the Project Management Control 
System (PMCS), generation of financial and technical reports, and organization of technical 
support and reviews. Costs related to management of project-wide ES&H issues are included.   

 
1.1.1 ES&H.  This element captures efforts and other costs associated with management of 

safety related issues in the design and construction phases of the Project. 
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1.1.2 Project Management.  This element comprises the management and administrative 
activities of the project. It also takes account of the Project Management Control 
System operation and the cost of contracted management support. 

 
1.1.3 Technical Support.  This element captures all technical support, review activities, and 

general collaboration not identified with a specific instrument.   
 

1.2 X-ray Pump-Probe Diffraction.  This section of the WBS identifies all required the design, 
procurement, and fabrication efforts associated with this instrument, which utilize the ultra-
bright, ultra-short X-ray pulses from LCLS, permitting a large class of dynamical processes in 
molecules and condensed matter systems to be studied directly, with atomic spatial resolution 
and sub-picosecond time resolution. 

 
1.2.1 Physics Support & Engineering Integration.  This element states all the Physics and 

Engineering support associated with the execution of the design, procurement and 
fabrication efforts for this instrument. Costs related to design reviews and vendor visits 
will be captured in this WBS element 

 
1.2.2 X-ray Optics.  This element captures the design, procurement, and fabrication of all 

components such as the Monochromator, the Beryllium Lenses, the Slits & 
Collimators, and the Attenuators.   

 
1.2.3 Laser System.  This element consists of all efforts to design, procure, and fabricate the 

laser system. Major components listed under this element are the Ti: Sapphire 
Oscillator & Amplifiers Systems & pumps, Temporal Pulse Shaper, Optics & 
Optomechanics, Laser Diagnostic, the Hutch Optical Table System, Laser Timing 
System, Optical Experiments, Laser Containment System, and Optical Parametric 
Amplifier.   

 
1.2.4 Detector System.  This element covers all efforts to develop, build, and test the 2D 

Pixel X-ray Detector System as stated in the MOU between SLAC and Brookhaven 
National Laboratory. This system will be used for the X-ray pump-probe diffraction 
(XRPP) experiments, which require a moderate resolution, full-well capability of at 
least 104 8keV photons, and moderate overall detector size. It also covers all major 
reviews by the LCLS/LUSI Detector Advisory Committee. 

 
1.2.5 Sample Environment.  This element consists of all efforts to design, procure, and 

fabricate the sample environment, including the Diffractometer.   
 

1.2.6 Lab Facilities.  This element captures the design, procurement, and installation of the 
Electrical Outlets.   

 
1.2.7 Vacuum.  This element sums up all efforts associated with designing, procuring, and 

fabrication of this system, including all hardware, bellows, and spools. 
 

1.2.8 Installation.  This element includes all labor and material required for the assembly and 
installation of this instrument.   

 
 

1.3 Coherent X-ray Imaging.  This section of the WBS identifies all required design, 
procurement, and fabrication efforts associated with this instrument, which take advantage of 
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the extremely bright, ultra-short LCLS pulses of hard X-rays to allow imaging of non-periodic 
nano-scale objects, including single biomolecules or small clusters, at or near atomic 
resolution.   

 
1.3.1 Physics Support & Engineering Integration.  This element covers all Physics and 

Engineering support associated with the execution of design, procurement and 
fabrication efforts for this instrument. Costs related to the coordination of design 
reviews and vendor visits are also included.   

 
1.3.2 X-ray Optics.  This element captures the design, procurement, and fabrication of the 

required components, including the Kirkpatrick-Baez (KB) mirrors, the Beryllium 
Lenses, the Slits, the Attenuators, and the Compressor.   

 
1.3.3 Sample Environment.  This section includes all efforts to design, procure, and fabricate 

all required parts to complete the sample chamber, the Ion ToF, the Electron ToF, and 
the Precision Instrument Stand.   

 
1.3.4 Lab Facilities.  This element captures the design, procurement, and installation of the 

Electrical Outlets.   
 

1.3.5 Vacuum.  This element sums up all efforts associated with designing, procuring, and 
fabrication of this system, including all hardware, bellows, and spools.   

 
1.3.6 Injector.  This element reflects the development effort for the particle injector by a 

MOU with LLNL.   
 

1.3.7 Installation.  This element includes all labor and material required for the assembly and 
installation of this instrument.   

 
 

1.4 X-ray Photon Correlation Spectroscopy.  This section of the WBS identifies all required 
design, procurement, and fabrication efforts associated with this instrument, which takes 
advantage of the brightness and short pulse properties of LCLS to give this instrument the 
ability to study atomic-scale dynamics over a range of time scales – picoseconds to 
microseconds – that is inaccessible by any other generally-applicable technique.   

 
1.4.1 Physics Support & Engineering Integration.  This element covers all the Physics and 

Engineering support associated with the execution of the design, procurement and 
fabrication efforts for this instrument. Costs related to the coordination of design 
reviews and vendor visits are also included.   

 
1.4.2 X-ray Optics.  This element captures the efforts to design, procure, and fabricate all 

required components, including the Monochromator, the Beryllium Lenses, the Slit 
System, the Split and Delay System, the Collimators, and the Attenuators.   

 
1.4.3 Detector System.  This element covers all efforts to develop, build, and test the 2D 

Pixel X-ray Detector System as stated in the MOU between SLAC and Brookhaven 
National Laboratory. This system will be used for the X-ray Photon Correlation 
Spectroscopy (XPCS) experiments, which require a resolution of <50um, a full-well of 
<100 8keV photons and very low noise. The detector’s fame rate will match the 120 
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Hz pulse rate of the LCLS. It also covers all major reviews by the LCLS/LUSI 
Detector Advisory Committee.   

 
1.4.4 Lab Facilities.  This element captures the design, procurement, and installation of the 

Electrical Outlets and the Hutch.   
 

1.4.5 Vacuum.  This element includes all efforts associated with designing, procuring, and 
fabrication of this system, which include vacuum components, supports, bellows, and 
spools.   

 
1.4.6 Sample Environment.  This section includes all efforts to design, procure, and fabricate 

all required parts to complete the sample chamber.   
 

1.4.7 Installation.  This element includes all labor and material required for the assembly and 
installation of this instrument.   

 
 

1.5 Diagnostics.  This section of the WBS identifies all required design, procurement, and 
fabrication efforts associated with the LUSI diagnostics suite. Five X-ray diagnostics will be 
designed and constructed to individually measure the X-ray pulse intensity, position, and 
profile on a pulse-by-pulse basis.   

 
1.5.1 Physics Development.  This element covers the Physics and Engineering support 

associated with the execution of the design, procurement, and fabrication efforts for the 
diagnostic systems. Costs related to the coordination of design reviews and vendor 
visits are also included.   

 
1.5.2 Position Monitor.  This element describes the efforts associated with the design, 

procurement, and assembly of the X-ray position monitor for the instruments. This 
assembly consists of a fluorescent screen, visible wavelength mirror, vacuum actuator, 
and optical imaging system. It will be operated in 2 configurations: 1) Large field of 
view with coarse spatial resolution, which will be used to locate and steer the X-ray 
beam; 2) narrow field of view with high resolving power, which will be used when 
precise positioning of an optic into the X-ray beam is required.   

 
1.5.3 IO Pop-In Monitor.  This element covers all efforts and costs associated with the 

design, procurement, and assembly of the X-ray intensity monitor for the instruments. 
The assembly consists of a X-ray diode, vacuum actuator, and readout electronics. The 
main purpose of the monitor is to detect when the reflection condition of a Bragg 
reflector or mirror is satisfied.   

 
1.5.4 Hard X-ray Intensity Leave-In Monitor.  This element includes the required efforts to 

design, procure, and assemble the hard X-ray intensity monitor for the instruments.   
 

1.5.5 Wavefront Sensor.  This element includes the efforts associated with the design, 
procurement, and assembly of the Hartmann wavefront sensor for the instruments. An 
image is first acquired from a X-ray transmission through a pinhole array. The local 
phase front tilt of the X-ray bean profile is then computed with knowledge of the 
pinhole array orientation with respect to the X-ray detector. The focal X-ray beam is 
then computed by an algorithm that back-propagates the X-ray wavefront.   
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1.5.6 EO Monitor.  This element includes the required efforts to design, procure, and 
assemble the EO sampling apparatus.   

 
1.5.4 XCS Planning Package.  This element includes the required efforts to design, procure, 

and assemble the diagnostic package for the XCS instrument.   
 
 

1.6 Controls.  This section of the WBS identifies all required design, procurement, and fabrication 
efforts associated with the control systems for the three instruments. It consists of 2 major 
areas, the control subsystems and the data subsystems. The control subsystem will control the 
basic operations of all experimental endstations in the two experimental halls, the Near Hall 
and the Far Hall. The data subsystems will acquire, store, analyze, and archive all 
experimental data.   

 
1.6.1 Physics Development.  This element covers all the Physics and Engineering support 

associated with the execution of the design, procurement, and fabrication efforts for the 
control systems. Costs related to the coordination of design reviews and vendor visits 
are also included.   

 
1.6.2 In-Station Cabling.  This element includes all efforts associated with designing, 

procuring, assembling, final installation, and testing of all cables for the instruments.   
 

1.6.3 Computer Hardware/Administration.  This element captures all efforts associated 
with designing, procuring, and installation of the computer workstations, network, and 
storages for the instruments.   

 
1.6.4 Experimental Control (EPICS).  This element describes the efforts associated with 

specifying and developing a distributed soft real-time control systems utilizing EPICS 
for the instruments.   

 
1.6.5 Data Acquisition Hardware/Firmware.  This element captures the costs and efforts to 

procure all required hardware and firmware for the instruments.   
 

1.6.6 Timing and Triggering.  This element covers the costs and efforts to design, procure, 
and integrate all required components to synchronize with the LCLS X-ray beam, to 
receive and read the various timing signals, and to trigger the firing of laser for the 
XRPP instrument. 

 
1.6.7 Laser Control and Laser PPS.  This element describes the efforts related to the design, 

procurement, and review of the XRPP laser control and safety system. The control 
system includes motion control drivers to control the various motorized optical 
components.   

 
1.6.8 Vacuum Controls.  This element captures all costs and efforts to design, procure, and 

integrate all components to build the Transport and Endstation Vacuum Controls for 
the instruments.   

 
1.6.9 Diagnostics & Optics, and Sample Environment.  This element sums up all costs and 

efforts related to design, procurement, and assembly of all required components for the 
instruments. The optical elements associated with each Endstations will be controlled 
by the Optics Control subcomponent.   
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1.6.10 MPS/PLC.  This element covers the costs and efforts associated with the design, 

procurement, and integration of the Programmable Logic Controller & Interface HW 
for the Machine Protection Systems.   

 
1.6.11 XCS Planning Package.  This element includes the required efforts to design, procure, 

and assemble the controls package for the XCS instrument.   
 
 


