<table>
<thead>
<tr>
<th>LCLS Physics Requirements Document #</th>
<th>1.3-002</th>
<th>Linac</th>
<th>Revision</th>
<th>2</th>
</tr>
</thead>
</table>

L1-Linac Requirements

Paul Emma
Author
Signature
Date
6/8/05

Eric Bong
Injector/Linac WBS Manager
Signature
Date
6/8/05

Paul Emma
System Physicist
Signature
Date
6/8/05

David Schultz
E-Beam Systems Manager
Signature
Date
6/8/05

Darren Marsh
Quality Assurance Manager
Signature
Date
6/8/05

John Galayda
Project Director
Signature
Date
6/8/05

Brief Summary: This specification summarizes physics requirements for the first linac section in the LCLS (L1-Linac).

Keywords: Linac, RF

Key WBS#’s: 1.3
LCLS L1-Linac Requirements

The L1-linac (L1) is composed of the three existing SLAC linac sections 21-1b, 21-1c, and 21-1d, as shown in Figure 1 below. The requirements of this linac section are to accelerate a single 1-nC, 1-mm long electron bunch, at a repetition rate of 120 Hz, from 135 MeV to 250 MeV with the existing S-band (2.856 GHz) RF. This must be accomplished at an off-crest RF phase (−25° with respect to accelerating crest) in order to energy-chirp the bunch in preparation for bunch compression in the BC1 chicane, just beyond L1. In addition, the transverse slice-emittance of the electron bunch must be well preserved to a level of <4% growth in both planes.

Figure 1: L1-Linac schematic layout with beta functions and device names.

The low energy beam in the L1-Linac requires more frequent focusing stations than provided by the existing linac in sector-21 and thus two new quadrupole magnets must be added after the 21-1b and the 21-1c sections. New beam position monitors (BPMs) and x and y steering corrector magnets (not shown) are also required very near these new quadrupoles in order to control the trajectory to within 250 μm.

In order to allow more linear bunch compression, a short (60 cm) X-band (11.424 GHz) RF section is included just after the three L1 S-band sections. This section operates with a decelerating voltage of 19 MV (at crest), but phased near the negative RF crest (phase of −160°). Therefore, the S-band RF sections must accelerate up to 268 MeV, where after the X-band decelerates down to 250 MeV. Both the S-band and the X-band contribute to the linear energy-chirp of 1.6% rms prior to the BC1 chicane.
The S-band RF must be stable to 0.1-deg rms with its one klystron. The RF amplitude must be stable to 0.1% rms, while the X-band RF must be stable to 0.5-deg-X rms with its one klystron and its RF amplitude must be stable to 0.25% rms.

Table 1 lists some of the main parameters of the L1-Linac.

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial to final electron energy</td>
<td>E</td>
<td>135 to 250</td>
<td>MeV</td>
</tr>
<tr>
<td>Bunch length (rms)</td>
<td>σ_ζ</td>
<td>830</td>
<td>μm</td>
</tr>
<tr>
<td>Active length of system</td>
<td>L</td>
<td>8.8</td>
<td>m</td>
</tr>
<tr>
<td>Relative energy spread of ϵ bunch (rms)</td>
<td>σ_ϵ/E</td>
<td>0.1 to 1.6</td>
<td>%</td>
</tr>
<tr>
<td>RF phase of S-band sections</td>
<td>ϕ_s</td>
<td>-25</td>
<td>S-deg</td>
</tr>
<tr>
<td>RF phase of X-band sections</td>
<td>ϕ_x</td>
<td>-160</td>
<td>X-deg</td>
</tr>
<tr>
<td>S-band voltage at crest (not incl. ~15% overhead)</td>
<td>ΔV_s</td>
<td>147</td>
<td>MV</td>
</tr>
<tr>
<td>S-band mean phase stability (rms)</td>
<td>$\Delta \phi_s$</td>
<td>0.1</td>
<td>deg-S</td>
</tr>
<tr>
<td>S-band mean amplitude stability (rms)</td>
<td>$\Delta V_s/V_{s0}$</td>
<td>0.1</td>
<td>%</td>
</tr>
<tr>
<td>X-band voltage at crest (not incl. ~15% overhead)</td>
<td>ΔV_x</td>
<td>19</td>
<td>MV</td>
</tr>
<tr>
<td>X-band mean phase stability (rms)</td>
<td>$\Delta \phi_x$</td>
<td>0.5</td>
<td>deg-X</td>
</tr>
<tr>
<td>X-band mean amplitude stability (rms)</td>
<td>$\Delta V_x/V_{x0}$</td>
<td>0.25</td>
<td>%</td>
</tr>
</tbody>
</table>