

Drive-Laser Operations

- Drive Laser
 - Thales laser

IMG

- Transport system
- Recent Laser Milestones
 - Safety
 - Technical
- Where do we stand today?
 - Laser Acceptance Status
- Laser Commissioning
- UV on cathode Injector Commissioning "Laser Operations"

Future

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

UV pulse goals

- IR to UV conversion efficiency > 10 %, 2.5 mJ output @ 255 nm
- 252-258 nm, < 2% energy stability
- 120 Hz, MTBF > 5000 hours

Stanford Linear Accelerator Center

Laser Beam Specifications on the Cathode

Parameter	Nominal Spec	Tolerance
Central Wavelength	255nm	+/- 3nm
Pulse Energy	>0.4mJ	<2% RMS variation
	Continuously adjustable	(shot-to-shot)
Spatial Fluence Profile	Uniform (adjustable)	<20% (peak-to-peak)
Spot Radius	Adjustable from 0.6mm to 1.5mm	<4% (Shot-to-shot)
Centroid Position Stability	<10% radius (RMS)	
Repetition Rate	120Hz, 60Hz, 30Hz, 10Hz, 1Hz	
Temporal Power Profile	Uniform (adjustable)	<8% peak-to-peak
	Slope adjustable from -10% to +20%	on the plateau
Profile FWHM	10 psec	< 2 % RMS
	(adjustable to from 5 to 20 psec)	(over multiple shots)
Profile Rise/Fall time	1.0ps (10% to 90%)	
Timing Jitter	< 0.25 psec (shot-to-shot)	with respect to the
		external RF source
November 8, 2006	B	Bill White Stanford

4

Thales Laser System Specifications

Parameter	Nominal spec	Tolerance
Wavelength	255nm nom.	+/- 3nm
Pulse energy	> 2.5 mJ	< 2 % rms variation
Spatial fluence profile	Gaussian, M ² <2	<10% peak-to-peak variation within the profile)
Pointing Stability	Less than 25 microradian	
Rep rate	120Hz, 60Hz, 30Hz, 10Hz, 1Hz	
Temporal power profile	Uniform	<8% peak-to-peak on the plateau
profile FWHM	10 psec adjustable from 5 to 20 psec	< 2 % (RMS over multiple shots)
Rise/fall time	1.0 psec (10% - 90%)	
Timing jitter	< 0.25 psec (shot-to-shot)	
MTBF	>5000 hours	With periodic maintenance
November 8, 2006	5	Bill White Stanford Linear Accelerator

Thales Laser system

CP

Oscillator

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Femtolock

4.Femtolock schematic

Jedi Pump Lasers

QCW diode pumped
 MOPA design
 2 amps
 KTP doubler

Output Specifications

Repetition rate (Hz)	100
Energy per pulse (mJ)	>120
Average power (W)	>12
Pulse width (ns)	<15
Wavelength (nm)	532
Shot-to-shot stability (1) (% rms)	< 1.5
Typical M ²	< 10
Beam pointing stability (1) (µrad)	± 50
Beam profile	Multimode, Gaussian

Drive Laser Operations

Drive Laser Pulse Control То Cathode High Energy Beam Voltage Control Dump Supply Pockels Cell Laser Trigger (120 Hz) High Speed PPS Driver MPS Laser Pulses MCC 120HZ Stanford Linear November 8, 2006 **Bill White** 11 Accelerator **Drive Laser Operations** b.white@slac.stanford.edu

Pulse Shaping - Dazzler

Solid State Saturation Fluence

In general, lasers are designed to operate at Jsat because:

14

- •Optimize gain and energy extraction
- •Better energy stability

Intensity at Saturation (2 ps)

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Conventional CPA Stretcher/Compressor

Intensity

17

Positive dispersion stretcher

 $I_{eff} = (f-S_1) + (f-S_2)$

Negative dispersion compressor

Time

Bill White

November 8, 2006 Drive Laser Operations

b.white@slac.stanford.edu

Generic Regenerative Amplifier

Generic Regenerative Amplifier

THG Module

Two type I BBO SHG and THG crystals

November 8, 2006 Drive Laser Operations

Coupled NL Splitstep FFT Pulse Propagation

Temporal discretization> 4096Spatial discretization per stage> 1000

Active Steering Stabilization

Testing of the Newport Shaper

Drive Laser Operations

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Recent Milestones

 Safety
 LSS certified 11/3/06
 Final SOP approved 11/6/06
 ESC Walkthrough 11/8/06 Standard Operating Procedure and Approval to Operate The LCLS Injector Laser Laboratory (LCLS ILL)

Author: Date and Version: Department: Location: Expiration Date: Sasha Gilevich, LCLS ILL System Laser Safety Officer 10/11/2006, Version 4 LCLS Sector 20 until special notice

APPROVAL OF STANDARD OPERATING PROCEDURE(S) DESCRIBED HEREIN:

John Galayda	, Director, LCLS	Date
Sasha Gilevic	h, LCLS Injector Drive Laser Safety Officer	Date
Bill White,	Laser Group Leader	Date
Ted Fieguth,	SLAC Laser Safety Officer	Date

APPROVAL TO OPERATE SYSTEM(S) DESCRIBED HEREIN UNTIL EXPIRATION:

John Galayda, Director, LCLS	Date	
Sasha Gilevich, LCLS Injector Drive Laser Safety Officer	Date	
Ted Fieguth, SLAC Laser Safety Officer	Date	

NLTL SOP and Operation Approval, 10/13/06, Version 4.0, pg. 1/23

Bill White

November 8, 2006 Drive Laser Operations

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Recent Milestones

July 21 – Laser Arrives at Sector 20

26

November 8, 2006 Drive Laser Operations Bill White b.white@slac.stanford.edu

Recent Milestones

July 14 – Laser Tables Installed

November 8, 2006 Drive Laser Operations

Recent MilestonesJuly 24 – Complete system on table

November 8, 2006 Drive Laser Operations Bill White b.white@slac.stanford.edu

Where are we now? - Today

29

Laser Infrastructure complete

November 8, 2006 Drive Laser Operations

COHERENT

Stanford Synchrotron Radiation Laboratory

Thales Laser System Performance

Pulse Energy After compressor – 35mJ UV output-2.8mJ Energy jitter in UV – 1.1% (rms) Spatial shape in IR – Gaussian, $M^2 = 1.5$ Pointing Stability – 5 µrad Timing Jitter – 0.21psec

Energy Jitter Measurements

Pointing Stability Measurements

Temporal Shaping and UV Conversion

 UV
 Conversion process affects the temporal shape –
 Optimum crystal length is essential

November 8, 2006 Drive Laser Operations

Where are we now? - Today

Drive Laser Operations

Where are we now? - Today

Where are we now? - Today

Temporal Shaping and UV Conversion

37

 UV
 Conversion process affects the temporal shape –
 Optimum crystal length is essential

November 8, 2006 Drive Laser Operations

Temporal Shaping

- Dazzler 45mm long
- 2 passes in the Dazzler
- Beam size, collimation and alignment of the Dazzler are critical
- Resolution of the Dazzler should be 0.3nm

Using Dazzler to Shape the Spectrum

Temporal Pulse Shape

Drive Laser Operations

November 8, 2006

b.white@slac.stanford.edu

Temporal Pulse Shaping

The achieved temporal pulse shape meets physics requirements for the injector commissioning

Plan to improve the temporal shape

- Replace the Lyot filter in the regen amplifier by the edge mirrors – this will reduce oscillations
- Continue working on the Dazzler settings and the optimum UV conversion crystals lengths
- Thales engineers are coming back in December-January to continue working on shaping
- Plan B to use stacking of Gaussian pulses
 Design and parts for pulse stacking are in place

Spatial Beam Shaping – Newport Shaper

- Converts Gaussian beam input to flat top output
- Transmission >97%
- High profile uniformity -78% of input power is directed into the flat top with 15% RMS power variation
- Collimated output beam allows use of conventional optics after beam shaping
- Provides performance over large wavelength ranges

November 8, 2006 Drive Laser Operations

Spatial Shaping – work in progress

Laser Output

Spatial Shaper Output

November 8, 2006 Drive Laser Operations

43

Bill White b.white@slac.stanford.edu

Laser Commissioning

Transport

- Shaper
- Diagnostics
- Pointing Lock Loops
- Characterization
 - Calibration of diagnostics
 - Virtual Cathode

Transport System in the Laser Bay

Drive Laser Operations

Optical System next to the Photocathode

Photocathode Launch System

Photocathode launch system has been assembled in the laser bay

48

The system will be tested before it goes into the vault

November 8, 2006 Drive Laser Operations

What's Next - Laser Commissioning

Laser table and LSS in Vault

- Laser door installed prior to transport – Nov 20
- Components will be installed and tested in laser bay prior to table moving to vault
- Support for laser table should be ready for table installation on Nov 28th

Bill White

Stanford

Accelerato Center

Linear

What's Next - Laser Commissioning

 Virtual cathode work requires GTL.

1 M C

- Gun can be installed two weeks after GTL installation
- UV on cathode one week later.
- Laser optimization (temporal profile, stability, automation, etc) will continue until GTL is installed.

Injector Commissioning

UV on Cathode scheduled mid-March

Laser group operates the laser

Some laser commissioning will continue in parallel

- Characterization
- Automation
- Refine Operation Procedures
- Refine Maintenance Schedules
- August 07 Down
 - Train Ops Group
 - Hand off laser in Jan 08

Hand Over to Ops

- August 07 Down
 Train Operations Group on typical Operation Procedures
 Hand off laser by Jan 08
- Laser Group will support Ops
 - Scheduled Maintenance
 - Issues that arise outside of the typical operation envelope

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

End

