| No. | Risk Title | Date | Submitted By | Date Last | Owner | If | Then | Risk Timeframe
Which phase
could this event
occur? Design, | Probability of Event | Estima
Optim | nt Cost In
ites (use
istic, ML:
P: pessii | \$k) O:
most | time i | ule Impa
in months
istic, ML:
P: pessi | s) O:
most | Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid, | Steps for Handling the Plan | Risk
Retired - | |------------|--|-----------|----------------------|-----------|----------------------|--|---|---|----------------------|-----------------|--|-----------------|--------|---|---------------|---|---|--|---------------------| | | | Submitted | Submitted By | Revised | Owner | " | men | Construction,
and/or
Commissioning | (percentage) | 0 | ML | Р | 0 | ML | Р | Overview of Kisk Hailulling Plan | Mitigation,
Transfer,
Accept | Steps for nationing the Fran | Mark "X"
for Yes | | | Management Change Control | 5/52004 | Mark
Reichanadter | 5/52004 | Mark
Reichanadter | If change control is not effective, | Then change could get implemented without proper review and approval. | Design,
Construction | 5 | 10 | 50 | 150 | 0 | 1 | 2 | Implement change control system and review cost, schedule and scope against baseline on a monthly basis. | Mitigate | 7/04 - Set baseline. 8/04 thru
10/08 - Review cost status
monthly. | | | R1.1-002 | Basis of Cost
Estimate is not
documented | 5/52004 | Mark
Reichanadter | 5/5/2004 | Mark
Reichanadter | If analysis supporting design decisions isn't documented, and supported by experts, | project may be at risks that cannot be covered | Design,
Construction | 5 | 0 | 0 | 100 | 0 | 0.5 | 1 | Ensure that Basis of Estimate documentation is provided for all design decisions, procurements and subcontracts, ensure also that estimators are experienced in cost estimating and that they understand the full scope of work | Mitigate | Iterate on WBS Dictionary, use experienced estimators and/or vendors to provide estimates | | | R-1.1-003 | Project Schedule
Validity | 5/52004 | Mark
Reichanadter | 5/52004 | Mark
Reichanadter | If the project schedule
is invalid due to
incomplete
"subsystem" elements
or schedule slips, | Then the comprehensive schedule may be invalid. | Design,
Construction,
Commissioning | 20 | 0 | 0 | 0 | 0 | 1 | 2 | Include schedule contingency and evaluate schedule. | Accept/Mitig ate | Understand the critical path, optimize areas of float, use experts to 'value engineer' the overall construction schedule | | | R1.1-006 | Personnel | 5/52004 | Mark
Reichanadter | 5/52004 | Mark
Reichanadter | If there is a change in
management
personnel, or the
project cannot draw
high-quality personnel
to key positions | Then project knowledge will be lost and the program may change. | Design,
Construction,
Commissioning | 20 | 0 | >\$1M | >\$5M | 0 | 3 | 12 | Communicate regularly with Lab managemen
on the resource needs of the project,
proactively recruit key personnel for upper
management and engineering positions on
the project | Mitigate | Constant communication and knowledge transfer to Lab management | | | R1.1-007 | Integration of
SLC Control
system Alpha to
EPICS IOCs | 5/9/2004 | L.R. Dalesio | 5/9/2004 | L.R. Dalesio | IF we fail to
implementAlpha
functions
1-simple polled data
transfer
2-Timed acquisition
for beam synchronous
data
3-Buffered acquisition
of beam synchronous
data | commissioning and | Construction,
Commissioning | <5% | 0 | 0 | 0 | 3 | 6 | 6 | Assign adequate manpower to assess the relevant tasks and carry them out. 3 FTE per year are assigned to mitigation of this risk. | Mitigate | 1-identify all SLC-micro
message types
2-write message emulators for
EPICS IOCs | | | R1.1-008 | LCLS Timing
System | 5/9/2004 | L.R. Dalesio | 5/9/2004 | L.R. Dalesio | IF there is a delay in implementation or technical deficiency in the following three new designs: PNET receiverfor EPICS Master Pattern Generator for EPICS Event Receiver for EPICS | Integration of the existing SLC Controls System and the LCLS EPICS controls Will not be integrated, preventing the Operation of LCLS from the MCC and Rendering useless many essential SLC controls functions in the LCLS | Construction,
Commissioning | <5% | 400 | 1000 | 2000 | 3 | 4 | 6 | Adapt Timing pulse generator design from the
Swiss Light Source
For LCLS use. This module has 20 nsec
resolution and at this time it is
Not clear that the SLS design meets all LCLS
specifications. | Accept | 1-Develop and test three LCLS timing Modules in 2005-2006 2-Investigate alternative solutions in 2007 if necessary 3-Implement alternative solution in 2008, continue work on preferred solution | | | R-1.1-00\$ | Serious Accident
on the SLAC Site | 1/3/2005 | Mark
Reichanadter | 1/3/2005 | Mark
Reichanadter | IF there is a serious accident on the SLAC site by SLAC employee, contractor or visitor | Then a work stappage of all LCLS activities regardless of the accident cause or effect could occur | design,
construction,
commissioning.,
operations | < 5% | 400K | 4M | 10M | 3 | 4 | 6 | Implement an Integrated Safety Management System (ISMS) for the LCLS Division and Project. Ensure that LCLS upper-level management supports the ISMS and that ES&H issues are given the highest priority. Ensure that adequate ES&H resources (both technical and construction) are devoted to maintaining a safe working environment for LCLS staff. | Mitigate | Constant communication and regular training for LCLS staff that ES&H and ISMS is the highest priority for the LCLS. | | LCLS_risk_registry_Jan_05 Page 1 of 8 | No. | Risk Title | Date | Submitted By | Date Last | Owner | lf . | Then | Risk Timeframe
Which phase
could this event
occur? Design, | Probability of Event | Estima
Optim | nt Cost I
tes (use
istic, ML
P: pessi | sk) O:
most | time i | ule Impa
in month
nistic, ML
P: pessi | s) O:
most | Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid, | Steps for Handling the Plan | Risk
Retired - | |----------|--|-----------|----------------------|-----------|----------------------|---|--|---|----------------------|------------------------|--|----------------|--------|--|---------------|--|---|--|---------------------| | | | Submitted | , | Revised | | | | Construction,
and/or
Commissioning | (percentage) | 0 | ML | Р | 0 | ML | Р | • | Mitigation,
Transfer,
Accept | | Mark "X"
for Yes | | R-1.1-01 | Co-Location of
Core LCLS Staff | 1/3/2005 | Mark
Reichanadter | 1/3/2005 | Mark
Reichanadter | If the core team of managers, scientists, engineers, and designers cannot be co-located at its three partner labs | Then, a loss of coordination and communication will be realized witin the LCLS project | Design,
construction,
commissioning,
operations | 20# | 400K | 2M | 4M | 3 | 4 | 6 | Discuss regularly with Lab management the need for co-located space for the LCLS teams. | Avoid,
mitigate | LCLS will communicate regularaly with Lab management at SLAC, ANL and LLNL to retain the necessary co-located office space to house its core staff | t | | | Equipment
I Storage and
Staging Area | 1/3/2005 | Mark
Reichanadter | 1/3/2005 | Mark
Reichanadter | IFthe LCLS cannot obtain secure storage space for equipment and deliverables prior to installation | THEN there is the potential for loss or damage to the LCLS deliverables | Construction, commissioning, o perations | 10% | 400k | 1m | 4m | 3 | 4 | 6 | Develop staging plan with estimates
on space needs and timing. Describe security and access requirements and any special equipment reauirements and work with SLAC to ensure adequate space is available when needed | Avoid,
mitigate | LCLS will communicate regularly with SLAC management to obtain the necessary warehouse space to ensure LCLS deliverables are stored properly prior to installation in the LCLS conventional facilities | | | 1. | Injector System | R-1.2-00 | Laser Beam
I Temporal
Shaping | 5/4/2004 | S. Gilevich | 5/4/2004 | S. Gilevich | If we are unable to procure or preserve the laser pulse flattop temporal shape (set by the pulse shaper) during amplification and UV conversion | Then the laser pulse on the cathode will not meet the temporal profile requirements and the emittance of the electron beam leaving the gun will be too large. And the optical components down the line could be damaged by the spikes in the amplified pulse shape | | 3 | 50 | 100 | 100 | 3 | 3 | 6 | Conduct R&D together with BNL and INFN. Develop alternative technologies of pulse shaping (spectral filtering) | Mitigate | Test the temporal shaper
developed by INFN with the BNL
laser
Test the spectral filtering
technology with the GTF laser | | | R-1.2-00 | Dual Feed L0-1
Structure | 5/7/2004 | Richard F.
Boyce | 5/7/2004 | Lynn Bentson | with the design or | will not be ready | Design,
Construction | 20 | 0 | 50 | 100 | 3 | 3 | 6 | Use a single feed L0-1 structure while waiting for the dual feed L0-1 structure. | Mitigate | Start the design early Fabricate ASAP | | | R-1.2-00 | 3 O4 Linac
Downtime Work | 5/7/2004 | Richard F.
Boyce | 5/7/2004 | Lynn Bentson | If the shield wall is not complete during the Linac downtime | Then work in the Sector
20 Alcove to prepare for
installation cannot
proceed | Construction | 30 | 0 | 50 | 100 | 6 | 6 | 12 | Prepare the work in detail in advance. Work two shifts during the '04 downtime. Complete the work during the '04 winter 2 week break. Complete the work during the '05 linac downtime. | Mitigate | Schedule for the Steps:
04-06/2004
07-08/2004
12/2004 | | | R-1.2-00 | '05 Linac
Downtime Work | 5/7/2004 | Richard F.
Boyce | 5/7/2004 | Lynn Bentson | If the waveguides in
the Linac area are not
installed before the
Linac downtime is
over | Then the beam cannot be accelerated in the injector | Construction | 30 | 0 | 50 | 100 | 6 | 6 | 12 | Prepare the work in detail in advance. Work two shifts during the '05 downtime. Complete the work during the '05 winter 2 week break. Complete the work during the '06 linac downtime. | Mitigate | 04-06/2005
07-08/2005
12/2005
07-08/2006 | | LCLS_risk_registry_Jan_05 Page 2 of 8 | No. | Risk Title | Date
Submitted | Submitted By | Date Last
Revised | Owner | lf | Then | Risk Timeframe
Which phase
could this event
occur? Design,
Construction, | Probability of Event (percentage) | Estima
Optim | nt Cost I
ites (use
istic, ML
P: pessi | * \$k) O:
: most | time
Optim | ule Impa
in month
nistic, ML
P: pessi | s) O:
: most | - Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid,
Mitigation, | Steps for Handling the Plan | Risk
Retired -
Mark "X"
for Yes | |------------------------|--|-------------------|-----------------------------|----------------------|---------------------|--|---|--|-----------------------------------|------------------------|---|---------------------|---------------|--|-----------------|--|--|--|--| | | | | | | | | | and/or
Commissioning | | 0 | ML | Р | 0 | ML | Р | | Transfer,
Accept | | | | R-1.2-00 | '06 Linac
Downtime Work | 5/7/2004 | Richard F.
Boyce | 5/7/2004 | Lynn Bentson | If the DL and SAB
beamlines are not
installed before the
Linac downtime is
over | Then the injector cannot inject the beam into the linac or complete commissioning to the SAB dump | Construction | 30 | 0 | 50 | 100 | 6 | 6 | 12 | Prepare the work in detail in advance. Work two shifts during the '06 downtime. Complete the work during the '06 winter 2 week break. Complete the work during the '07 linac downtime. | Mitigate | Prepare work in advance Work two shifts during '06 down Work during '06 winter break Work during '07 linac downtime | | | R-1.2-000 | RF Gun at 120
hertz | 5/7/2004 | Richard F.
Boyce | 5/7/2004 | Richard F.
Boyce | If the RF gun changes
shape due the
increased heat load of
120 hertz operations | Then the RF gun will not
resonant with the
klystron and will not
accelerate the electron
beam properly | Commissioning | 10 | 50 | 100 | 150 | 3 | 3 | 6 | Tune the RF gun manually so injector testing can proceed while the RF gun cooling is redesigned and a new RF gun in fabricated. | Mitigate | Manually tune the RF gun during injector testing Redesign the RF gun cooling Fabricate a new RF gun | 3 | | R-1.2-007 | FY05 Shutdown | 1/4/2005 | Eric Bong | 1/4/2005 | Eric Bong | IF the FY05 shutdown
significantly moes
earlier in time,
decreases in duration
or is eliminated | THEN the components scheduled for installation during the FY05 shutdown will not be installed in the beamline during FY05. | Commissioning, operations | > 25% | 0 | < \$1M | < \$1 M | 3 | 3 | >3 | Mitigate risk of failure to install beamline components during FY05 downtime by establishing whether downtime will occur, and the duration if it occurs. Re-schedule installation work that will not happen in FY05 into FY06 and extend the FY06 downtime to accommodte work. | Accept | Define FY05 downtime existence and parameters with SLAC laboratory management. Re-schedule downtime installation work. 3. Re-optimize engineering and fabricationschedules to new installation schedule. | | | R-1.2-008 | Insufficient
Charge | 1/5/2005 | Eric
Bong/Dave
Dowell | 1/5/2005 | Cecile Limborg | IF the gun does not produce the specified charge | THEN the FEL will not produce the rquired 10^12 photons per pulse | Commissioning | <25% | <
\$100K | < \$1M | > \$5m | 0 | 3 | 0.3 | The beam charge is determined by the drive laser energy and the cathode quantum efficiency. The approach should be to first determine which of these subsystems is not meeting its specification, then correct that one. Mitgate using R&D on non linear conversion. Develop gun load lock as upgrade. | Mitigate | Drive laser energy is low: Put more resources into the non-linear conversion system via the LLNL SOW plan. Cathode QE is low: Implement the load lock and use plasma discharge cleaning to improve QE. Also, improve gun vacuum. | s
id | | R-1.2-009 | Emmittance
Specification | | Eric
Bong/Dave
Dowell | 1/5/2005 | Cecile Limborg | IF emittance from injector does not meet specification | THEN the FEL will not perform to its specifications | Commissioning | < 25% | \$100K | \$500K | \$1M | 0 | 3 | >3 | The injector emittance is determined by drive
laser shaping and the cathode quality. The
best approach to improving the emittance is
to put more effort into the drive laser system
and to implement better cathodes with the
load lock. | Mitigate | Improve the drive laser by proceeding with the R&D at LLNL. 2. Build and imcorporate the load lock and the load lock room. | | | R-1.2-010 | Cabling Code
Uncertainty | 1/4/2005 | Eric Bong | 1/4/2005 | Eric Bong | IF the cabling code
requirement at SLAC
changes before the
cable plant is
accepted and the
incorrect cable is
purchased or installed | THEN new cable will
have to be purchased
and/or installed to meet
the new code
requirement. Removing
and reinstalling new
cable would delay CD4. | Construction | > 25% | < \$1m | < \$1m | > \$5m | 0 | 0 | >3 | Accept risk of changing cable code requirements and purchase cable meeting or exceeding the standard that will certainly be adopted. | Accept | Purchase the cable appropriate to the new code. 2. Adjust the injector pain to reflect the increase in cable cost. | t | | R-1.2-01 ⁻¹ | Reliability of the
Injector Drive
Laser System | 6/4/2004 | Sasha
Gilevich | 6/4/2004 | Sasha Gilevich | IF any of the dirve
laser system
components fails (for
example, due to optics
damage or due to
diode laser failure) | THEN the whole LCLS will be shut down for a certain period of time required to find and fix the problem and realign and check the laser system. This downtime period can be significant due to the complexity of the system and to the fact that the main components will be built by the outside vendor and could be fixed only by
its manufacturer. | Operations | 30% | \$350K | \$500K | \$1000
K | 0.5 | 0.5 | 1 | Plan the laser bay to have the space and utilities to accommodate the second laser system. Request the Project Office to allocate FY07 funds towards procurement of the second laser system | Accept | Order the system. Integrate the system. | | | 1.3 | Linac System | | | | | | | | | | | | | | | | | | | LCLS_risk_registry_Jan_05 Page 3 of 8 | NI. | Did Till | Date | 0.1 | Date Last | 0 | | T | | Probability of | Estima
Optim | nt Cost I
ites (use
istic, ML
P: pessi | sk) O:
most | time i
Optim | n months
istic, ML:
P: pessi | s) O:
most | | Risk
Handling
Approach: | | Risk
Retired - | |-----------|--|-----------|---------------|-----------|---------------|---|---|--|--------------------|------------------------|---|----------------|-----------------|------------------------------------|---------------|--|--|---|---------------------| | No. | Risk Title | Submitted | Submitted By | Revised | Owner | lf | Then | occur? Design,
Construction,
and/or
Commissioning | Event (percentage) | 0 | ML | Р | 0 | ML | Р | Overview of Risk Handling Plan | Avoid,
Mitigation,
Transfer,
Accept | Steps for Handling the Plan | Mark "X"
for Yes | | R-1.3-001 | Linac RF Stability | 5/6/2004 | Eric Bong | 5/6/2004 | Eric Bong | If the following RF stability is not achieved L1: φ1: 0.1° S; ΔV1/V1: 0.10% LX: φX: 0.1° X; ΔVX/VX: 0.25% L2: φ2: 0.1° X; ΔVX/VX: 0.25% L3: φ3: 0.1° X; ΔV3/V3: 0.25% | The electron bunch
length will vary with
phase instability and the
electron energy will vary
with the amplitude
instability. This will
cause fluctuations in the
SASE FEL pulse length
and peak brightness. | Commissioning,
Operations | >25% | 0 | 0 | 750 | 0 | ъ | >3 | Mitigate risk of failure to achieve RF stability requirements by instituting R&D efforts to develop an appropriate signal to use as feedback to establish RF stability. Investigate multiple feedback signal sources in case one source fails to meet criteria. Model feedback effectiveness. Test feedback on Linac klystron using EPICS control mockup in Linac Sector 21. | Mitigate | Perform bunch length measurements w EO and OTR/THz signals with test beam 2. Build LLRF prototype and install in Linac. Build EPICS test stand in Linac. Write RF feedback software. Instrument Linac klystron and rest feedback. | | | R1.3-002 | FY05 Shutdown | 1/4/2005 | Eric Bong | 1/4/2005 | Eric Bong | IF the FY05 shutdown
significantly moes
earlier in time,
decreases in duration
or is eliminated | THEN the components scheduled for installation during the FY05 shutdown will not be installed in the beamline during FY05. | Commissioning, operations | > 25% | 0 | < \$1M | < \$1M | 3 | 3 | >3 | Mitigate risk of failure to install beamline components during FY05 downtime by establishing whether downtime will occur, and the duration if it occurs. Re-schedule installation work that will not happen in FY05 into FY06 and extend the FY06 downtime to accommodte work. | Accept | Define FY05 downtime existence and parameters with SLAC laboratory management. Re-schedule downtime installation work. Re-optimize engineering and fabricationschedules to new installation schedule. | | | R-1.3-003 | Sector 20
Beneficial
Occupancy | 1/4/2005 | Eric Bong | 1/4/2005 | Eric Bong | If the beneficial
occupancy of Linac
Sector 20 is delayed | THEN the components scheduled for installation in the laser alcove and the injector vault will be delayed | Construction | < 25% | 0 | 0 | < \$1M | 0 | 1 | 3 | Accept risk of delay to install beamline
components due to Li20 Beneficial
Occupancy delay and minimize impact by
regular inquiry into Li20 construction
progress and revising installation schedule to
accommodate | Accept | Regularly review Li20 conventional construction progress. 2. RE-schedule installation work. | | | R-1.3-004 | Linac Legacy
Issues | 1/5/2005 | Eric Bong | 1/5/2005 | Eric Bong | IF the condition of the existing SLAC Linac infrastructure does not support LCLS requirements | THEN the LCLS will not
be able to operate the
new beamlie
components required to
meet electron beam
delivery parameters | Design,
Construction | > 25% | < \$5M | < \$5m | > \$5m | 0 | 0 | 3 | Mitigate risk by upgrading SLAC Linac infrastrucure prior to commissioning Linac | Mitigate | Specify utilities requirements to conventional facilities. 2. Check conventional facilities plan to veerify utilities requirements will be met. 3. Monitor implementaiton of CF plan. 4. Verify utilities capacities prior to component installation. | | | | Cabling Code
Uncertainty | | Eric Bong | 1/4/2005 | Eric Bong | IF the cabling code
requirement at SLAC
changes before the
cable plant is
accepted and the
incorrect cable is
purchased or installed | THEN new cable will have to be purchased and/or installed to meet the new code requirement. Removing and reinstalling new cable would delay CD4. | Construction | > 25% | < \$1m | < \$1m | > \$5m | 0 | 0 | >3 | Accept risk of changing cable code requirements and purchase cable meeting or exceeding the standard that will certainly be adopted. | Accept | Purchase the cable appropriate to the new code. 2. Adjust the linac pain to reflect the increase in cable cost. | | | 1.4 | Undulator Syster | n | | | | Measurement time | | | | | | | | | | | | | | | R-1.4-002 | Magnetic
Measurements | 5/7/2004 | Robert Ruland | 5/7/2004 | Robert Ruland | estimates are based
on measurements
performed on the
undulator segment
prototype at APS. The
tuning of the
production undulator
segments might take
longer than estimated
based on the
prototype. | Presently, we are only scheduling work during day shift. We would add additional personnel allowing us to staff swing or even night shifts. | Construction | <25% | <1000 | <1000 | <1000 | 0 | 0 | 0 | Time estimates are based on measurements on the undulator prototype at APS. If production undulator segments are more difficult and more time consuming to tune, we can add additional staff to run swing or even night shifts | Mitigate | Loan from other departments or
hire additional staff | | | R-1.4-003 | Fixed Support
Design
Specification | 5/9/2004 | Steve Milton | 5/9/2004 | Steve Milton | | Then beam-based
alignment need to be
performed too often to
achieve availability and
stability functional goals | _ | <25% | 50 | 100 | 100 | 3 | 5 | 6 | Get more design and engineering support on this. | Avoid | Cost of an additional engineer and designer for 3 months. | | | R.1-4-004 | Chamber
Roughness
Specification | 5/9/2004 | Dean Walters | 5/9/2004 | Steve Milton | If the surface
roughness of the
chambers is too high | Then it is very likely that
there will be significant
reduction in total power
delivered or no lasing at
all. | Commissioning, | ? | 50 | 100 | 120 | 3 | 5 | 6 | Prototyping of various chamber configurations will be performed and the results of the prototype chambers measured roughness will be given to a theorist to determine if it meets the performance specifications. Methods of reducing the surface roughness of the chambers will also be tested. | Avoid | | | LCLS_risk_registry_Jan_05 Page 4 of 8 | No. | Risk Title | Date
Submitted | Submitted By | Date Last
Revised | Owner | lf | Then | occur? Design, | Probability of
Event | Estima
Optim | tes (use
istic, ML:
P: pessi | \$k) O:
most | time i | in month
istic, ML
P: pessi | s) O:
most | Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid, | Steps for Handling the Plan | Risk
Retired -
Mark "X" | |-----------|--|-------------------|--------------------|----------------------|----------------------|--|--|---|-------------------------|-----------------|------------------------------------|-----------------|--------|-----------------------------------|---------------
---|---|---|-------------------------------| | | | oubou | | Noviou | | | | Construction,
and/or
Commissioning | (percentage) | 0 | ML | Р | 0 | ML | Р | | Mitigation,
Transfer,
Accept | | for Yes | | R-1.4-005 | Machine
Protection
System | 5/9/2004 | Josh Stein | 5/9/2004 | Steve Milton | If beam strikes the undulators do to unwitnessed steering errors, | Then the magnet blocks in the undulator may be damaged. | | <25% | 20 | 25 | 50 | <1 | 1 | 2 | The Machine Protection System within the undulator section will be designed with different system inputs in mind, but will be based on beam loss monitors. If it is determined at a later date that the beam position information is a required input into the system, that capability will be added as another system input to the global MPS. | Avoid | The beam position may be monitored via: 1) The existing RFBPM systems – this requires active EPICS participation, but reduces the impact on new electronics designs (see below) and adds minimal software effort 2) Some type of Beam Position Limit Detectors may be designed to signal when the beam has exceeded vertical or horizontal limits. | | | R-1.4-006 | RFBPM – Timing
Interface | 5/9/2004 | Josh Stein | 5/9/2004 | Steve Milton | If the timing interface
to the existing SLAC
timing system is not
correlated with the RF
BPM's | Without accurate and reliable timing information, the data acquired from the RFBPM, a system critical component, becomes meaningless. | Design,
Commissioning,
Operations | >25% | 20 | 25 | 50 | <1 | 1 | 2 | The design of the EPICS aware timing module will depend almost directly on the amount of effort expended – with this in mind the primary method of handling this risk is by assigning multiple and redundant engineers to the design effort. | Avoid | | | | R-1.4-007 | Magnet Block
Radiation
Damage | 5/9/2004 | Marion White | 5/9/2004 | Stephen V.
Milton | If the high-energy
electron beam strikes
any of the undulator
magnet blocks, | Then it is very likely that some amount of radiation damage will occur, resulting in partial demagnetization of individual magnets within the undulator. | Commissioning,
Operations | >25% | 20 | 25 | 50 | <1 | 1 | 2 | There is risk that one or more undulators will be damaged in part or in total by radiation as a result of commissioning or operational beam strikes. | Mitigate,
Accept | The risk handling plan is: 1) Collimators are installed to protect the undulators 2) Equipment protection devices, including radiation devices, including radiation sensors will not allow beam operation under conditions known to be dangerous to the undulators. 3) Seven (7) spare undulators are being purchased. 4) All undulator magnets are made of a new higher coercivity material which is less sensitive to radiation damage. 5) ANL-APS is carrying out studies with the intent of better understanding the actual damage mechanism and helping to determine safe operating dose levels. 6) Undulators can be rolled out of the beam to do beam tuneup studies. 7) Commissioning procedures developed with undulator protection as one of the prime goals. | | | R-1.4-008 | Undulator
Vacuum Chamber
AC Conductivity | 12/4/2004 | Dean R.
Walters | 12/1/2004 | Stephen Milton | IF the Undulator
Vacuum Chamber
necessitates a
change in material due
to the AC Conductivity
of the chamber wall
material. | THEN there will have to be a redesign to the Undulator Vacuum chamber design. With a change of chamber design also brings about a change in construction method. | Design,
construction,
commissioning | > 25% | \$300K | \$500K | \$800K | 3 | 6 | 12 | Analyze impact of material and cross section choice on performance. Change vacuum chamber design to use better suited material (Cu -> Al) and chamber cross section (circular -> oblong). Optimize FEL gain through micro-tapering. Reduce bunch charge in combination with increased linac bunch compression. | Mitigate,
Accept | Technical stucy of AC conductivity. Complete construction methodologies study. | | LCLS_risk_registry_Jan_05 Page 5 of 8 | No. | Risk Title | Date
Submitted | Submitted By | Date Last
Revised | Owner | lf | Then | Risk Timeframe Which phase could this event occur? Design, Construction, | Probability of
Event
(percentage) | Estima
Optim | nt Cost I
ites (use
istic, ML:
P: pessi | \$k) O:
: most | time i | ule Impa
in months
iistic, ML:
P: pessii | s) O:
most | Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid,
Mitigation, | Steps for Handling the Plan | Risk
Retired -
Mark "X" | |-----------|---|-------------------|--------------------|----------------------|----------------------|--|--|--|---|------------------------|--|-------------------|--------|---|---------------|---|--|--|-------------------------------| | | | | | | | | | and/or
Commissioning | (регоспіадо) | 0 | ML | Р | 0 | ML | Р | | Transfer,
Accept | | for Yes | | R-1.4-009 | Lack of final
performance
specificiations of
focusing and
corrector
magnets:
schedule, and
cost implications
of delayed
decision on
specs | 12/1/2004 | Marion White | 12/1/2004 | Stephen V.
Milton | specificiation and
alignment tolerance of
the quadrupole and/or | | Design,
construction,
commissioning,
operations | > 25% | \$100K | \$100K | \$100k | <1 | <1 | 2 | There is a risk that the present quadrupole and corrector magnet strength and alignment tolerance will be changed again due to incompletely developed commissioning and oeprating plans. There is also risk in that a prolonged delay in making the required decisions on magnet strengths and alignments tolerance will cause significant schedule delay and thus cost growth. The magnet is an integrated part of the undulator line, and changing it requires changes or perhaps loss of nearby components. The risk handling plan is: 1. The new PRD will be sidned off by 18 Feb 2005. | Mitigate,
Accept | See handling plan | | | R-1.4-010 | Undulator period
and aperture
change due to
AC impedance
issues;
performance,
schedule, and
cost implications,
including delayed
decision | 12/1/2004 | Marion M.
White | 12/1/2004 | Stephen V.
Milton | IF the undulator period, aperture, and quantity change due to mitigation of AC impedance issues, and if there is a delay in deciding on a course of action | THEN it is very likely that there could be performance, schedule, and/or cost implications. | Design,
construction,
commissioning,
operations | > 25% | < 100K | < 1M | > 10M | <1 | >1 | 6 | There is risk that the present undulator design will cause degraded FEL performance due to possible wakefield enhancement by AC contributions to the impedance. There is risk that a prolonged delay in making a decision on the required undulator gap and period
will cuase significant schedule delay and thus cost growth. | Mitigate,
Accept | A task force was set up t o make calculations, simulations, and measurements, and to propose a solution to Project Management by mid-January 2005. 2. The decision will be made and a revised PRD will be issued by 18 February 2005. If there are no or only minor design changes to the undulator, the baseline schedule can be met. 4. If significant design changes are required to mitigate the wakefield problems and ensure FEL performance, a redesign will be done as rapidly as possible. 5. If additional undultaors are grequired to compensate for increased gap, the production schedule and plan may need adjustment. | | | R-1.4-011 | End of Undulator
Diagnostics Suite | 12/1/2004 | Dean R.
Walters | 12/1/2004 | Stephen V.
Milton | IF the goals and rose
of the End of
Undulator Diagnostics
are not detailed | THEN the organization
and schedule of the End
of Undulator will be in
flux | Design,
construction,
commissioning | > 25% | <1M | <1M | 5M | 0 | 3 | 6 | Conduct discussions and R&D together with
SLAC and LLNL. Develop plan for technical
study followed by a listing of responsibility of
equipment design, construction, and
installation. | Mitigate | Complete Technical Study of
End of Undulator Diagnostics.
Assignment of responsibility. | | | | Undulator
Component
Motion | | Josh Stein | | Stephen V.
Milton | | THEN the motors may
become damaged to the
point where they cease
to function, or function
in an inappropriate
manner. | | 30% | 50K | 500K | 500K | 1 | 1 | 3 | Determine radiation susceptibility of pertinent motors. Develop alternative motor choices and anticipate backup installation. | Mitigate | Test motors for damage in SR environment. Characterize the threshold for motor resistance. Plan on installation of "worst case" motorr choices to minimize impacet on replacint existing motors if necessary. | | | 1.5 | X-Ray, Transport | Optics & Dia | agnostics Syst | em | | | TUEN of high abotes | | | | | | | | | | | | | | R-1.5-001 | Solid Attenuator
Performance | 5/8/2004 | R. Bionta | 5/8/2004 | R. Bionta | IFsolid attenuators fail
to achieve sufficient
or linear attenuation
due to damage or
physics effects. | THEN at high photon energies, we will be unable to cross calibrate the diagnostic detectors, and we will be unable to operate the direct imagers and the spectrometer. | Commissioning | 10 | 500 | 1000 | 2000 | 3 | 6 | 12 | Make solid attenuators of the lowest Z materials. Develop plans to raise pressure in the gas attenuator and to run it with higher z gases. Plan for moving solid attenuators and detectors downstream. | Mitigate | Design low-z solids Develop high pressure / high z gas capabilities in gas attenuator Provide space for solid attenuators downstream. | | LCLS_risk_registry_Jan_05 Page 6 of 8 | No. | Risk Title | Date | Submitted By | Date Last | Owner | If | Then | Risk Timeframe
Which phase
could this event
occur? Design, | Probability of Event | Estima
Optim | nt Cost I
ites (use
istic, ML
P: pessi | sk) O:
most | time
Optim | ule Impa
in months
histic, ML:
P: pessi | s) O:
most | Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid, | Steps for Handling the Plan | Risk
Retired - | |------------------|--|-----------|--------------|-----------|-------------|--|--|---|----------------------|-----------------|---|----------------|---------------|--|---------------|---|---|---|---------------------| | | THIS THE | Submitted | , | Revised | Cimic. | " | | Construction,
and/or
Commissioning | (percentage) | 0 | ML | Р | 0 | ML | Р | Control of Nakinalianing . Ian | Mitigation,
Transfer,
Accept | Clope 15. Harding the Figure | Mark "X"
for Yes | | R-1.5-002 | Gas Attenuator
Performance | 5/5/2004 | R. Bionta | 5/5/2004 | R. Bionta | If gas attenuator fails to achieve sufficient or linear attenuation due to insufficient pressure with an opening large enough to pass the required beam footprint. | Then, at low photon energies, we will be unable to cross calibrate the diagnostic detectors, and we will be unable to operate the direct imagers and the spectrometer. | Commissioning | 10 | 500 | 1000 | 2000 | 3 | 6 | 12 | The risk of poor gas attenuator performance is handled in a 3 pronged approach. First we are investigating window technologies that allow higher pressures across bigger openings, and have provided access shafts for external gas piping into the FEE. Secondly, we have increased the length of the gas attenuator to 10 m, considerably lowering the pressure requirements and have positioned the gas attenuator so that it can be expanded into the muon shield and into the flex space if necessary. Thirdly, we have the option of moving the solid attenuator's and detectors further downstream if necessary. | Mitigate | 1) Design low-z solids 2) Develop high pressure / high z gas capabilities in gas attenuator 3) Provide space for solid attenuators downstream. | | | R-1.5-003 | Imager noise and backgrounds | 5/5/2004 | R. Bionta | 5/5/2004 | R. Bionta | If imager noise levels
are too high due to
high radiation
backgrounds, EMP, or
high readout rates | Then we will be limited in our abilities to measure the FEL at low intensities during commissioning. | Commissioning | 10 | 500 | 1000 | 2000 | 3 | 6 | 12 | Provide an indirect imager which can be withdrawn in a direction transverse to the beam to lessen Compton background. Run cameras at slower readout speeds. Provide a gas ion chamber and total energy detector for alternative means of measuring beam intensity. Locate detectors in first hutch during commissioning, downstream of electron dump and muon shields. | Mitigate | | | | 1.6
R-1.6-001 | X-Ray Endstation Laser Timing | | J. Arthur | 5/7/2004 | J. Arthur | If the desired level of synchronization is not | The the precision of experiments and | Operations | 10 | 100 | 100 | 100 | 3 | 3 | 3 | Allow plenty of time for design | Mitigate | | | | | Failure 2-D Detector Failure | | J. Arthur | | J. Arthur | achieved If the 2-D X-Ray Detector fails to meet its technical requirements by | diagnostics will be
compromised Then the goal of
developing this useful
instrument will not have
been met | Operations | 30 | 1,000 | 1,000 | 1000 | 0 | 0 | 0 | Begin detector R&D immediately. If R&D results are not promising, pursue acquisition of alternative detector, with less aggressive specifications, in FV07. | Mitigate | | | | 1.9 | Conventional Fac | ilities | | | | 9/28/08 | | | | | | | | | | | | | 4 | | | Bay Area Labor
Construction
Cost | | David Saenz | 5/7/2004 | David Saenz | If the Bay area
economy experiences
rapid economic
growth, to levels see
5-10 years ago. | Then Bay area labor force may experience an increase in demand that can result in a greater labor cost than currently estimated. | Construction | <5% | >\$5M | >\$5M | >\$5M | 0 | 0 | 0 | Monitor trends for bay area construction activities | Avoid,
Accept | Review and track various resources for bay area construction activities, specifically labor costs. Develop quarterly reports and present economic trends to the LCLS Project Office | | | R-1.9-004 | Construction
Schedule | 5/7/2004 | David Saenz | 5/7/2004 | David Saenz | If the average
tunneling rate, using
road header boring, is
not maintained | Then the minimal tunneling advances will experience a schedule delay and impact the overall schedule of beneficial occupancy milestones | Construction,
Commissioning,
Operations | <25% | <\$5M | <\$5M | <\$5M | 3 | 3 | 3 | Closely monitor all major activities and proactively seek improvements to the CF schedule. Call an early review with outside experts to optimize the LCLS construction schedule. | Avoid,
Accept | Review all critical patch
activities, place all tunneling and
excavation operations onto the
critical path, increase of
necessary manpower, and make
provisions for additional
equipment (road headers) | | | R-1.9-005 | Undulator Hall
HVAC | 5/7/2004 | David Saenz | 5/7/2004 | David Saenz | If the environmental
parameters of the
tightly controlled
Undulator Hall thermal
requirements are not
realized, | Then the specified technical requirements will not allow the 33 undulators to function properly | Commissioning,
Operations | <25% | <\$1M | <\$1M | <\$1M | >3 | >3 | >3 | Review and validate the design by Jacobs
Engineering for the Undulator Hall
HVAC
system | Mitigate | Provide peer review of mechanical systems, provide adequate review of the HVAC system during upcoming VE session in Title II | | | R-1.9-006 | Tunneling | 5/7/2004 | David Saenz | 5/7/2004 | David Saenz | If the subsurface
material is to soft | Then voids and soft
surfaces will require
additional reinforcement
and potentially cause
additional cost and
potential schedule
delays | Construction | <25% | <\$1M | <\$1 M | <\$1M | <3 | <3 | <3 | Provide additional detailed geotechnical analysis of subsurface to approximately 10' below inverted tunnel floor elevation | Mitigate | Provide additional borings,
develop geotechnical
investigation | | LCLS_risk_registry_Jan_05 Page 7 of 8 | No. | Risk Title | Date | Submitted By | Date Last
Revised | Owner | lf | Then | Risk Timeframe
Which phase
could this event
occur? Design, | Probability of
Event | Estima
Optim | nt Cost I
tes (use
istic, ML
P: pessi | * \$k) O:
: most | time i | ule Impa
in months
istic, ML:
P: pessi | s) O:
most | Overview of Risk Handling Plan | Risk
Handling
Approach:
Avoid, | Steps for Handling the Plan | Risk
Retired - | |-----------|--|-----------|--------------|----------------------|-------------|---------------------------------------|--|---|-------------------------|------------------------|--|---------------------|--------|---|---------------|---|---|--|---------------------| | | | Submitted | | Revised | | | | Construction,
and/or
Commissioning | (percentage) | 0 | ML | Р | 0 | ML | Р | | Mitigation,
Transfer,
Accept | | Mark "X"
for Yes | | R-1.9-008 | Seismic activity
during
construction | 5/7/2004 | David Saenz | 5/7/2004 | David Saenz | earthquake occurs
during tunneling | Then a life/safety issue
may cause possible
accidents or schedule
delays | Design,
Construction | <25% | <\$1M | <\$1M | <\$1M | <3 | <3 | <3 | | | Provide construction design to
peer review, submit final design
to SLAC Seismic Safety
committee for review and
approval | | | R-1.9-01 | RSY Pile
Locations | 5/7/2004 | David Saenz | 5/7/2004 | David Saenz | If excavation of piles | Then major modifications to the construction plan, cost and schedule may be impacted | Construction | <25% | <\$1M | <\$1M | <\$1M | <3 | <3 | <3 | Manage CF scope of design effort to ensure completion within scheduled parameters. | Mitigate | Manage CF scope for
requirements, manage Jacobs
Engineering effort to assure
timeliness of final deliverable,
validate all scope changes | | | R-1.9-01 | Delta Between
Jacobs
Engineering and
WDWC Cost
Estimates | 1/5/2005 | David Saenz | 1/5/2005 | David Saenz | cost estimate is | THEN the CF budget will need to be readjusted to increase by ~ \$7M | | 2% | | > \$5m | | 0 | 0 | | Continually review and validate the cost etimage against local contractor conditions. | Mitigate | Increased contingency assessment for the RY-CLOC construction Phase. Will RE-evaluate the estimated constructino cost at the o 30% and 60% T2 phase with JE as well as the CM/GC | | LCLS_risk_registry_Jan_05 Page 8 of 8