

Stanford Synchrotron Radiation Laboratory

Overview, X Ray Transport, Optics, and Diagnostics

WBS 1.05, WBS 2.05

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Stanford Synchrotron Radiation Laboratory

Overall Scope
General Goals
Technical Progress
BCWS
Major Risks

Near-term plans

August 10, 2004 1.5 Overview

UCRL-PRES-205945

1.5 Overview

UCRL-PRES-205945

bionta1@llnl.gov

1.5 Overview

UCRL-PRES-205945

XTOD Goals

- Provide vacuum path from end of undulator to hutches in Far Hall with capability of attenuating beam to synchrotron levels.
- Provide necessary diagnostics to commission the LCLS and monitor its performance.
 - Detect X-Ray Photons in Far Hall.
- Demonstrate detection and optical techniques that would be useful to users.

Stanford Synchrotron Radiation Laboratory

We have developed and tested a prototype of the main Imager

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Stanford Synchrotron Radiation Laboratory

Prototype measured and predicted sensitivities in fair agreement

August 10, 2004

1.5 Overview

UCRL-PRES-205945

Y, microns

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Predictions based on Monte Carlo/simulation of SPEAR beam 4,000 3,000 2.000 1,000 -1,000 Bend -2,000 LSO25 Exit Z -3,000 -4.000 450 -5.000 400 8,000 -4,000 -2.000 ò 2.000 4.000 350 6.000-X, microns 300 4.000 250 X Ray Photons 200 2,000 150 interacting in **SPEAR source** 100 -2,000 scintillator simulation 50 -4,000 0-0 10 20 30 40 -6.000-Interaction depth, microns -8,000 -10.000--10.000 -5.000 0 5.000 8,000 Transverse position, 6.000 microns 4.000 2,000 0 Visible photons -2,000 detected by CCD -4,000 -6,000 -8,000 **Richard M. Bionta** August 10, 2004 -10 000 -10.000 -5.000 0 5.000 1.5 Overview bionta1@llnl.gov

Currently adding LCLS source to simulation

Expected LCLS beam profile contains FEL and Spontaneous halo

At entrance to NEH, FEL tuned to 8261 eV Fundamental

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Stanford Synchrotron Radiation Laboratory

Detailed calculations of halo along beamline are underway

← 20 mm →

0 < E < 10 keV 7.6 < E < 9.0 keV 10 < E < 20 keV 20 < E < 27 keV

Near-Field Spontaneous Radiation Patterns in FEE, at position of gas attenuator (88 m from End-of-Undulator)

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Gas Attenuator Prototype Design

August 10, 2004 1.5 Overview

UCRL-PRES-205945

XTOD WBS Organized by Function

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Schedule emphasizes early completion of vacuum

system and diagnostics needed for commissioning

	FY04	FY05	FY06	FY07	FY08
Controls					
Mechanical and Vacuum					
Front End Enclosure(FEE)					
Near Experimental Hall					
Tunnel					
Far Experimental Hall					
Facility Optical Systems					
Fixed Mask FEE					
Slits/Collimator A FEE					
Slits/Collimator B FEE					
Gas Attenuator FEE					
Solid Attenuator FEE					
Crystals and Gratings					
Crystal Monochromator FEH					
Pulse Split and delay FEH					
Diagnostics					
Modeling and Simulation					
Direct Scintillator Imager					
Indirect Imager					
Imaging Diagnostic Tank					
Comissioning Diagnostic Tank					
Total Energy Measurement					
Spectrometer					

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Stanford Synchrotron Radiation Laboratory

Budgeted Cost of Work Scheduled (BCWS)

OPC supports R&D in FY04-05 and commissioning in FY07-08

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Major XTOD risks listed in registry

Gas Attenuator Performance

- if...fails to achieve .. pressure with an opening large enough to pass the required beam footprint, then, at low photon energies ... problems calibrating and imaging
- Solid Attenuator Survival and FEL Distortion

Imager Noise Levels

If ... levels are too high due to high radiation backgrounds, EMP, or high readout rates.. Then we will be limited in our abilities to measure the FEL at low intensities during commissioning

Near term activities planned

Mechanical & Vacuum

- Gas Attenuator Calculations and Prototype
- Beam Line Layout / Standardization / Detailed Specifications

Modeling and Simulation

- Spontaneous / FEL simulation
- Calculate Beam sizes at Gas Attenuator, Cameras, etc
- Simulations of Camera response to mix of Spontaneous and FEL

Component R&D

- Spectrometer
- Total Energy
- Damage

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Technical Activities in FY05

- Detailed Design in preparation for construction in FY06
 - Mech. & Vac. through Near Hall
 - Slit
 - Gas attenuator
 - Direct Imager
- R&D & Prototype
 - Total Energy
 - Spectrometer
 - Indirect Imager

August 10, 2004 1.5 Overview

UCRL-PRES-205945

Stanford Synchrotron Radiation Laboratory

Summary

No XTOD Long-Lead Procurements

- XTOD Risks identified
- XTOD Baseline Set

XTOD Ready for serious R&D and Engineering effort to begin in FY05 in preparation for procurement and fabrication in FY06

UCRL-PRES-205945

