

LCLS Ultrafast Science Instruments

DESIGN REVIEW	REPORT	Report No. TR-391-	003-27-0						
 The Design Review Report S The title of the item A description of the Design Review Report The type of design r The date of the review The names of the provided reviewers The names of all the sheet) Completed Design C 	hall include at a minimum: or system; item; ort Number; eview; ew; esenters ons and department of the e attendees (attach sign-in Checklist.	 Findings/List of Action Items – these are items that require formal action and closure in writing for the review to be approved. See SLAC Document AP-391-000-59 for LUSI Design Review Guidelines. Concerns – these are comments that require action by the design/engineering team, but a response is not required to approve the review Observations – these are general comments and require no response 							
TYPE OF REVIEW:	Preliminary Design	Review							
WBS: 1.3 Coherent X-1	ay Imaging								
Title of the Review	Detector Stage and 1 m Design Review	icron Precision Ins	trument Stand Preliminary						
Presented By:	Pegasus Design (Steve Sébastien Boutet	Calderon), William	n Olson, Paul Montanez,						
Report Prepared By:	S. DeBarger		Date:15 May 2009						
Reviewers/Lab :	S. DeBarger – SLAC M. Holmes – SLAC D. Van Campen - SLA	С							
Distribution:									
Attachments:	Review Slides	Design Checklist Other							
Purpose/Goal of the Re	eview:								

- Assess the completeness of the physics and engineering requirements for the CXI Detector Stage and 1 micron Precision Instrument Stand
- Review the preliminary design of the CXI Detector Stage and 1 micron Precision Instrument Stand and evaluate how well it meets the requirements
- Review the interfaces that have been identified and how well they have been communicated to the relevant parties (includes controls and software interfaces, safety review committees)
- Assess plans for fabrication, assembly, testing and inspection, and maintenance
- Review the cost estimate and schedule.
- Identify high-risk elements and evaluate plans to mitigate the risk.
- Identify safety issues

Comment on whether the component design is ready to proceed to final design

Introduction and outcome summary of the review:

The 1 micron Precision Instrument Stand and Detector Stage position the 1 micron Sample Chamber and the Detector for the CXI instrument. These devices must be precisely aligned with respect to one another and also with respect to the LCLS FEL photon beam. The system must accommodate different configurations of the CXI instrument that support forward scattering and time-delay holography experiments using focused and unfocused photons.

The Preliminary Design Review confirmed that the physics requirements for the 1 micron Precision Instrument Stand and Detector Stage are documented and understood by the design team. The design of the 1 micron Precision Instrument Stand is well advanced and appears to meet the documented requirements. Some minor issues remain to be investigated, but the reviewers do not anticipate that this will lead to any substantial changes to the presented design. Although the engineers working on the design of the Detector Stage appear to have made good progress in the time that they have been involved with the project, it is not clear that the requirements for the stability of the detector position have been met. The reviewers encourage the design team to continue to pursue the presented design while looking to quantify anticipated detector motions. The CXI detector was identified as a high value item; the presented systems look to protect this item from damage as the instrument is configured for specific experiments. The CXI team has incorporated manufacturing, assembly, and servicing considerations into the presented designs.

Findings/Action Items: None

Concerns:

The presented design shows the beamline valve as a manual valve. The decision process to determine whether this valve should be manually or pneumatically actuated was not described. The two actuation options should be evaluated. This evaluation should consider what interlocks will be needed (the detector must be protected from a closing valve and also from motion of the detector into a closed valve). The effect of a power interruption to the control system should be considered.

<u>1 micron Precision Instrument Stand</u>

The ESD for the 1 micron Precision Instrument Stand should be updated to reflect the fact that 45 degree mounting of the mirrors is no longer being considered.

There was some uncertainty in the understanding of vendor statements concerning the accuracy of the slide/ball screw assemblies; the engineering staff should confirm their interpretation of theses statements with the vendor.

The effects of lateral seismic loads applied to the rod ends supporting the 1 micron Precision Instrument Stand may lead to failure of the rod ends. This does not appear to present a hazard to personnel safety; the effect of this failure mode on critical hardware (particularly the detector) should be explored.

The ball screws in the slide stages in the micron Precision Instrument Stand may be able to be back-driven (particularly under seismic loads). This possibility should be evaluated and, if found to be a problem, the use of right-angle driven screws to resist this should be explored.

The roll of the 1 micron Precision Instrument Stand during X and Y positioning will be controlled in software. Excessive roll could damage bellows, so the software will need to be robust and well tested.

A procedure to reposition hard stops when the 1 micron Precision Instrument Stand is relocated needs to be developed. It may be possible to design spacers or alternate stops that could be easily and reliably installed and removed when the stand is relocated.

The stage support plates holding the main support struts may bow under loading. If this becomes an issue, the plate could be mechanically stiffened.

The positioning of the feet for the 1 Micron Position Stand was not discussed directly. These supports could be bolted nominally centered on the focused K-B beamline, or the unfocused straight-thru beamline, or somewhere in the angle between the two. It appears that the stages in the X direction were shown nominally centered. The CXI team should check the travel/offset of the X-stages of the main stand and confirm that the selected positioning is consistent with the physics requirements and that appropriate travel exists for all desired operating conditions. Details of the anchorage of the 1 micron Precision Instrument Stand to the floor should be completed.

Detector Stage

The current ESD requires the ability to adjust the position of the Detector Stage with respect to the 1 micron Precision Instrument Stand while placing demanding limits on the amount of vibrational motion of the detector. These requirements tend to work in opposition to one another. The CXI team should reconsider the need for separate adjustment of the Detector Stage. Each rail for these secondary adjustments makes the system less stiff. The reviewers are of the opinion that alignment of the three sets of rails in the presented systems could probably be achieved with sufficient accuracy.

The envelope of possible detector motions can interfere with the valve aperture. The present plan

is to prevent this through software controls. These controls must be robust to ensure protection of this critical device. As an option, the design team could explore a collar fitted with limit switches that could sense interfering motions without damage to the detector or valve. Modal analysis of the Detector Stage reveals a first mode at 35 Hz. As no information on the forcing function for this system exists, the design team cannot evaluate whether the present design will meet the specified vibrational stability. It may be possible to collect data on the vibrational environment from the Near Experimental Hall and apply it with some confidence to the model. A likely more accurate determination could be made by mocking up the system and measuring the actual vibration, however this will require the procurement and fabrication of parts for the mock up. Current funding regulations do not appear to allow for a mock-up. No mention was made of fiducializing the detector to the exterior to the detector chamber. Plans for detector fiducialization should be incorporated into the Detector Stage design.

Observations:

The K-B mirrors are fixed in position, so focus cannot be adjusted. Changing from unfocussed to 1 um focus beam requires vacuum chamber translation requires rearrangement of vacuum chambers. To probe the focus beam width requires moving the the vacuum chambers along the beam path.

The 1 micron Precision Instrument Stand system weighs ~ 8000 lbs. The frame is primarily a structural steel tubing weldment with post-weld machining to bring the detector rail attachment points into proper alignment with beam axis.

The application of limit switches and hard stops to limit extreme motion of the 1 micron Precision Instrument Stand appears to be a well chosen solution.

The UHV version of the in-vacuum Micos slide will be selected.

The reentrant bellows will need to be restrained during handling/leakcheck of the main chamber prior to final assembly of the Detector Stage system.

Cost and schedule information appears to be reasonable at this time. The recent experience of the AMO group in preparing similar items at SLAC may be of interest to the CXI team.

Both the Precision Instrument Stand and Detector Stage look much stiffer in design than the original concept drawings.

LUSI	LUSI Design Review Attendance Record	
System: Coherent X-ray Imaging	Review Title: Detector Stage and 1 micron Precision Instrument Stand Preliminary Design Review	Date: 05-15-09
Name	Affiliation	Job Title
TAUL MONTANEZ	LCLS/LUSI	MECH ENG.
NAT STEWART	MECH DESIGN	DESIGNER
Don Scholer	Lus /Lusi	mechanical Engineer
Sligzar Octiz	LastLUST	Mech. Engr
Donates Van Campen	55RL/SNAL	Eng. Physicist.
SCOT DERAPHER	LCIS	Macht Fortaweer
Armin Bussr	LCLS/LUSI	Nech Engineer
Michael Holmes	LCLS	MECH ENG
Marc Compell	LUSI	MECA CAGI
TOM FORNER	LUSI	PROJ. MGR.
Damon Genetti	Pegasus Design	Mech. Engr.
STEVE CALDERON	REGASUS DESIGN	OWNER
SEBASTIEN BOUTET	Lusz	Physiciat
		100
	and the second	
L		

CXI 1 micron Stand and Detector Stage Preliminary Design Review WBS 1.3.5.1.1

Sébastien Boutet - CXI Instrument Scientist

May 15, 2009

- CXI Overview
- Experimental Configurations
- Detector Stage Physics Requirements
- I micron Precision Instrument Stand Physics Requirements
- Summary

One pulse, one measurement

CXI Instrument

CXI Detector Stage & Stand Preliminary Design Review

CXI Instrument Overview

Unfocused and 1 micron Focus Positions

- Two beam directions
 - Unfocused
 - 1 micron KB
 - Beam deflected by 6.8 mrad in x and y
- I micron Sample Chamber and Detector Stage must align with the beam for both cases
 - The 1 micron Precision Instrument Stand is used to accomplish this task

- Direct beam passes through hole in the detector
- Detector mounted downstream of sample chamber
- Configuration used with direct beam and beam deflected by 1 micron KB System

- Detector placed upstream of the sample
 - Turned 180 degrees to face the downstream end of the beamline
- Beam passes through the hole in the detector, then hits the sample
- Configuration used with direct beam and beam deflected by 1 micron KB System

Time-Delay Holography with Hard X-rays

- Purpose
 - Center the detector hole on the direct beam
 - Position the detector at the appropriate distance from the interaction region
- Performance Requirements
 - Range along the beam : 50-2600 mm
 - Non-continuous
 - Minimum continuous range sufficient to retract the detector past the gate valve
 - Possible to mount the detector stage upstream of the Sample Chamber
 - Include a photodiode and screen behind detector for alignment using a visible laser
- Size Requirements
 - Allows detector to be reentrant into the Sample Chamber
- Positioning Requirements
 - Detector face perpendicular to beam within 2 degrees

Motion	Nominal Position	Range	Resolution	Repeatability	Vibrational Stability	Thermal Stability		
Out of vacuum y1	0	-5 mm < y < 5 mm	10 µm	10 µm	1 µm	10 µm		
Out of vacuum x1	0	-5 mm < x < 5 mm	10 µm	10 µm	1 µm	10 µm		
Out of vacuum y1	0	-5 mm < y < 5 mm	10 µm	10 µm	1 µm	10 µm		
In-vacuum z	50 mm	50 < z < 2600 mm in steps of 600mm	50 µm	50 µm	1 µm	10 µm		
Yaw (x combination)	0°	±20 mrad	100 µrađ	100 µrad	10 µrad	10 µrad		
Pitch (Y combination)	Pitch (Y 0° ±20 m		100 µrad	100 µrad	10 µrad	10 µrad		

 Table 1: Motion requirements for the Detector Stage. The vibrational stability represents stability over a period of a few seconds. The thermal stability represents the stability over a period of a few hours.

- Vacuum Requirements
 - Vacuum better than 10⁻⁷ torr
 - Can vent Sample Chamber with Detector Stage under vacuum
 - Large gate valve
- Controls Requirements
 - Everything remote controlled
 - Follow SLAC and LCLS standards to the extent possible
- Safety Requirements
 - Interlock to prevent gate valve from closing on the detector
 - Diagnostics behind the detector for alignment
- Interfaces
 - Gate valve and Sample Chamber
 - 1 micron Precision Instrument Stand
 - At 2 locations
 - Vacuum line downstream
 - 6 inch flange

CXI Detector

- Purpose
 - Position the 1 micron Sample Chamber and Detector Stage along the unfocused or 1 micron focus beam
- Size Requirements
 - Large enough for the Sample Chamber, Detector Stage, all spacer spools and Detector Stage on upstream side
- Positioning Requirements
 - Places the 1 micron Sample Chamber 8 m downstream of mid-point of the KB mirrors
- Interface Requirements
 - 1 micron Sample Chamber
 - Detector Stage
 - Sample viewer microscope
- Controls Requirements
 - All motions remotely controlled
- Motion Requirements
 - Changing between unfocused and 1 micron beam can be achieved with a vacuum break

Motion	Range	Nominal Position	Resolution	Repeatability	Vibrational Stability	Thermal Stability
x position	-10 mm $< x <$ 70 mm	0 mm	50 µm	50 µm	0.1 µm	20 µm
y position	-10 mm $<$ y $<$ 70 mm	0 mm	50 µm	50 µm	0.1 μm	20 µm
z position	-10 mm $<$ z $<$ 70 mm	0 mm	50 µm	50 µm	0.1 µm	20 µm
Yaw	-0.1° < yaw > 0.5°	0°	30 µrad	30 µrad	5 µrad	5 µrad
Pitch	-0.1° $<\!pitch\!<\!0.5^\circ$	0°	30 µrad	30 µrad	5 µrad	5 µm

Table 1: Motion requirements for the 0.1 micron Precision Instrument Stand. Translations refer to the motion of the interaction point and rotations are around the interaction point.

CXI 1micron Precision Instrument Stand

Bill Olson, Mechanical Engineer Nat Stewart, Mechanical Designer

May 15, 2009

- Key documents
- Requirements
- Design Interfaces
- Preliminary Design
- Component Hardware
- System Loading
- Controls
- Safety
- Summary

PRD# SP-391-000-28	Physics requirements for the CXI Detector Stage
PRD# SP-391-001-41	Physics requirements for the 1 micron CXI Sample Chamber
PRD# SP-391-001-42	Physics requirements for the 1 micron CXI Precision Stand
ESD# SP-391-000-70	CXI Detector Stage
ESD# SP-391-001-43	CXI Sample Chamber
ESD# SP-391-001-44	CXI 1 micron Precision Instrument Stand
SLAC-I-720-0A24E-001	Seismic Design Specification for Buildings, Structures, Equipment, and Systems
Et al	

Requirements for the 1um Precision Instrument Stand are from SP-391-001-42 RO and SP-391-001-44 RO, with the goal of providing a stable precision positioning stand for the devices.

Motion	Range	Nominal Position Resolution		Repeatability	Vibrational Stability	Thermal Stability
X position	-10 mm < X < 70 mm	0 mm	50 μm	50 μm	0.1 μm	20 µm
Y position	-10 mm < Y < 70 mm	0 mm	50 μm	50 μm	0.1 μm	20 µm
Z position	-10 mm < Z < 70 mm	0 mm	50 μm	50 μm	0.1 μm	20 µm
Yaw	-0.1° < Yaw < 0.5°	0°	30 μrad	30 µrad	5 μrad	5 μrad
Pitch	-0.1°< Pitch < 0.5°	0°	30 μrad	30 µrad	5 μrad	5 μrad

Requirements (2)

Design of the Precision Instrument Stand must provide a range of travel that allows for 6.8 mrad in both X and Y directions from the reflecting mirror point 8 M up-beam. The table below gives the resulting displacements for the key points of interest.

Required plus motions for 6.8 mrad in each X & Y

		Distance F	rom Mirror	Range	of Motion	Nominal
Motion	Location	Inches	Millimeter	Inches	Millimeters	Position
Х	Upstream Slide	295.491	7505.5	-1 <x 2.00<="" <="" th=""><th>9 -10 <x 51.04<="" <="" th=""><th>0</th></x></th></x>	9 -10 <x 51.04<="" <="" th=""><th>0</th></x>	0
	Sample Chamber	314.961	8000.0	-1 <x 2.14<="" <="" th=""><th>2 -10 <x 54.40<="" <="" th=""><th>0</th></x></th></x>	2 -10 <x 54.40<="" <="" th=""><th>0</th></x>	0
	Detector Chamber	417.323	10600.0	-1 <x 2.83<="" <="" th=""><th>3 -10 <x 72.08<="" <="" th=""><th>0</th></x></th></x>	3 -10 <x 72.08<="" <="" th=""><th>0</th></x>	0
	Downstream Slides	465.051	11812.3	-1 <x 3.16<="" <="" th=""><th>2 -10 <x 80.32<="" <="" th=""><th>0</th></x></th></x>	2 -10 <x 80.32<="" <="" th=""><th>0</th></x>	0
Y	Upstream Slide	295.491	7505.5	-1 <y 2.00<="" <="" th=""><th>9 -10 <y 51.04<="" <="" th=""><th>0</th></y></th></y>	9 -10 <y 51.04<="" <="" th=""><th>0</th></y>	0
	Sample Chamber	314.961	8000.0	-1 <y 2.14<="" <="" th=""><th>2 -10 <y 54.40<="" <="" th=""><th>0</th></y></th></y>	2 -10 <y 54.40<="" <="" th=""><th>0</th></y>	0
	Detector Chamber	417.323	10600.0	-1 <y 2.83<="" <="" th=""><th>8 -10 <y 72.08<="" <="" th=""><th>0</th></y></th></y>	8 -10 <y 72.08<="" <="" th=""><th>0</th></y>	0
	Downstream Slides	465.051	11812.3	-1 <y 3.16<="" <="" th=""><th>2 -10 <y 80.32<="" <="" th=""><th>0</th></y></th></y>	2 -10 <y 80.32<="" <="" th=""><th>0</th></y>	0
Z	All	465.051	11812.3	-1 <z 2.75<="" <="" th=""><th>6 -10 <z 70.00<="" <="" th=""><th>0</th></z></th></z>	6 -10 <z 70.00<="" <="" th=""><th>0</th></z>	0

- Sample Chamber and its auxiliaries
- Detector Stage and its auxiliaries
 - Primary location downstream of the Sample Chamber
 - Secondary location immediately upstream of the Sample Chamber
- Interconnecting Spool/Pipe supports
- Anchoring System to the Building

Key Dimensions

The Sample Chamber mounting surface distance from the beamline establishes the top surface of the Precision Instrument Stand.

Preliminary Design

Evolution from the original concept to the current concept was necessary to accommodate increased loads, which require a more robust structural frame and higher load capacity actuators and support components. Also added to the structural frame is extended structure to support an upstream Detector position and a slide rail system to make moving the Detector in Z easier.

LCLS 1 micron Precision Instrument Stand

All Horizontal Stages & Slides are hard mounted to the Frame, which means Z movements can be made without moving instruments off beamline.

Typical Y-Support Column

Thomson 2HB20M Profile Actuator

Duff-Norton 2 Ton Ball Screw Actuator

Component Hardware

- Upright Rotating
- 2 Ton Capacity
- 0.25" Pitch Ball Screw
- 24:1 Worm Gear Ratio
- Full Load Torque
 - Starting: 25 in-lbs
 - Running: 20 in-lbs

www.duftertan.com + Ph (800) 477-5002 + Fax: (704) 588-1994

61

Component Hardware (2)

AccuSlide* 2HB

AccuSlide* 2HB

Features

- Used in continuously supported applications that require high stiffness and rigidity
- Single part number is all that is required
- Equipped with high load and moment capacity AccuGlide* ProfileRail* System
- · Protective shroud available with no reduction of stroke length

Components

- 1 double ProfileRail Assembly with T-Slots for mounting ease
- 1 carriage with 4 mounting holes
- 1 Integral Ball Screw Assembly

Dimensions (Metric)

AccuSlide* 2HB

Continuously Supported ProfileRail*System, with Carriage and Integral Ball Screw Assembly Metric

Specifying this Thomson System:

- Determine the proper system for your load and life requirements.
 Select the part number.
- Add the letter "L" followed by the overall length in millimeters, as a suffix to the part number (choosing a standard length will reduce costs and speed delivery).

 Place your order with your local authorized Danaher Motion distributor.

Part Numbering System

CXI 1 micron Precision Instrument Stand Preliminary Design Review

Aetric AccuSlid	le 2HB Profi	leRail Syste	m with Inte	gral Ball	Screw A	ssembly	and Carr	iage				(Dimension	ns in m
Part Number	Ball Screw (Dia. x Lead)	Accuracy mm/300mm	Repeatability	B	81	82	83	B9	G	F	G	н	H1
2HBM100YPG	16 x 5 P	0,025	± 0,005	100	60	70	60	105	47,15	M5	M5	60	31
2HBM100YPH	16 x 10 P	0,025	± 0,005	100	60	70	60	105	47,15	M5	M5	60	31
2HBM200YPL	25x5 P	0,025	± 0,005	200	88	145	88	205	69,6	M10	M8	90	45
HBM200YPM	25x10 P	0,025	± 0,005	200	88	145	88	205	69,6	M10	M8	90	45
2HBM20OYPN	25x25 P	0,025	± 0,005	200	88	145	88	205	69,6	M10	M8	90	45

Metric AccuSlide	etric AccuSlide 2HB ProfileRail System with Integral Ball Screw Assembly and Carriage												(Dimensions in mm)			
Part NumberDiameter	Nominal	D5	D6	D7	D8	B6	87	н	H1	H6	H9	т				
2HB-M10	10	10.5	6	3	2.5	70	15	60	31	15	13	100	_			
2HB-M20	20	16,5	8,1	6	4	155	22,5	90	45	22,5	20	200				

Appropriate mounting holes can be added for mounting the base of one system to the carriage of another for x-y configurations.

Metric AccuS	lide 2HF	3 Profil	eRail Syst	em with	n Integral	Ball Sc	rew Asser	nbly a	nd Ca	irriage	ė.				100	(Di	mensio	ons in	mm)
Part Number	H2	H4	K Central	м	M1	N	N1	В		L4	L5		T1	x		Y	Ma Lengt B	x. Stro th With tellow:	ike hout s
2HB-M10	61	60	35	70	15	70	15	12.5		70	26.5		100	75		37.5		L-125	
2HB-M20	89	88	85	145	27,5	145	27,5	20		105	40		200	120		42,5		L-240	
Metric System	m 2HB S	Standar	rd Length	5														(L	engths in mm
System	300	325	375 450	445	525 565	600	675 685	750	825	805	900	925	975	1045	1165	1285	1405	X	MAX
2HB-M10																		75	1500
2HB-M20																		120	3000

For Motion Control Options refer to the Motion Control Section on page 8-66. For Motor Coupling specifications, see page 8-56. The Unit Network Processor (Section 2014) For Limit Analyses, see pages 8-63. For Jacob Motion Screen Shaft Exonders, see page 8-58. For Spring Set electric backas, see page 8-59.

Custom Lengths

Phone: 1-800-554-8466

Website: www.linearactuators.com

Custom length systems are available. Lengths exceeding MAX length will require butt joints. For special requirement please contact the Danaher Motion Systems application engineering department.

Maximum Allowable Compressive Load

System Length (mm)

The Accidable has a pre-designed Maximum Accegatable bases (Rec. Calculate maximum compared meets (pend) by deleting you response of the pre-design of the access compared on the pre-design of the access compared on the pre-design of the access compared on the access of the access of the access compared on the access of the access of the access compared on the access of the access of the access compared on the access of the access of the access compared on the access of the

Bill Olson wholson@slac.stanford.edu

2000 3000

1000

Component Hardware (3)

Newall Absolute SHG-A2 Linear Encoder

Specifications	
Output Signal	RS232
Accuracy/Meter	±0.0004", ±0.0002", ±0.0001"(±10µm, ±5µm, ±3µm)
Resolutions	10µm, 5µm, 1µm or 0.5µm
Scale Travels	4" to 137.8" (102mm to 3.5m)
Scale Diameter	0.601" (15.25mm)
Reader Head Dimensions	2.05"H x 5.16"L x 1.10"D (52mm x 131mm x 28mm)
Reference Marker	n/a
Maximum Traverse Rate	n/a
Power Supply	5VDC ±5%, <350mA
Shock (11ms)	100g (IEC 69-2-6)
Vibration (55-2000Hz)	30g (IEC 68-2-27)
Sample Period	50µs
Environmental Rating	IP67, fully submersible (IEC 529) - Exceeds NEMA 6
Operating Temperature	32° to 131°F (0° to 55°C)
Coefficient of Expansion	12 x 10 ⁻⁶ K
Scale Material	316 stainless steel
Overall Scale Length	Scale travel length + 10.2" (258mm)
Standard Cable	15 core, 11.5' (3.5m) armored
Maximum Cable Length	65.6' (20m)
Standard Connector	15 pin "D" type
EMC Compliance	BS EN 61000-6-2 and BS EN 61000-6-4
Options	
Resolutions	Custom resolutions available
Non-Armored Cable	PUR (polyurethane)
	Honda PCR-E20FS (Fanuc)
Connectors	• IP67 (NEMA 6)
	None (flying lead)
Cable Lengths	22' (7m) or 19.68" (0.5m)

Rod End

Component Hardware (5)

Thomson 512 Slides

512 Style A - Standard Roller

Size	Di	Dimensions (mm)															Roller								
	A	8	8,* 48	82	្វ	J	Ľ	L,	L	L ₀	x	N	s	Sj	F	F1	F ₂	F3	Ø	G	G,	6,	M	0	Р
25	36	70	23	23.5	29.5	24.5	81	45	40	60	30	57	M8	M6	6.8	7	11	11	3.2	9	6.5	13	5.5	7.5	17.5
35	48	100	34	33	40	32	109	62	52	80	40	82	M10	M8	8.5	9	15	15	4.5	12	10	15	7	8	23
45	60	120	45	37.5	50	40	137.5	80	60	104	52.5	100	M12	M12	10.5	14	20	18	5	15	11	21	8	10	30.5
55	70	140	53	43.5	57	48	163.5	95	70	120	60	116	M14	M14	12.5	16	24	20	6	18	13.5	26	9	12	34.5

512 Style B - Standard Long Roller

Size	Dir	nensio	ons (m	m)															Roller						
	A	8	8,* 405	B ₂	٦	J	L	L	L	L	x	N	S ₂	S ₃	F	Ft	F2	F ₃	0	G	6,	6,	M,	0	P
25	36	70	23	23.5	29.5	24.5	103.4	45	40	79.4	30	57	M8	M6	6.8	7	11	11	3.2	9	6.5	13	5.5	7.5	17.5
35	48	100	34	33	40	32	136	62	52	103	40	82	M10	M8	8.5	9	15	15	4.5	12	10	15	7	8	23
45	60	120	45	37.5	50	40	172.5	80	60	135	52.5	100	M12	M12	10.5	14	20	18	5	15	11	21	8	10	30.5
55	70	140	53	43.5	57	48	205.5	95	70	162	60	116	M14	M14	12.5	16	24	20	6	18	13.5	26	9	12	34.5
65	90	170	63	53.5	76	58	251	110	82	201	75	142	M16	M16	14.5	18	26	23	7	23	19	32	13	15	51

* Standard tolerance shown, special lower tolerances are available upon request. Please consult application engineering for additional information.

Length of rail to be specified at time of order, $Y_1 = Y_2$ unless specified otherwise at time of order.

** When using additional modular seals or lubrication plates, the total length L will increase. Consult page 61-62 for additional information.

www.danahermotion.com

53

500 Series Roller

512 Style A and B

Dynamic Load and Moment Ratings C = Dynamic load rating M₁ = Dynamic pitch and yaw moment rating Mn = Dynamic roll moment rating

Static Load and Moment Capacities

Co=Static load capacity Mos = Static pitch and yaw moment capacity Mo=Static roll moment capacity

	Loading C	apabilities		Mome		Wei	ghts	
Size &	Co	C	M _{OQ}	M _Q	M _{OL}	ML	Carriage	Rail
Style	(N)	(N)	(Nm)	(Nm)	(Nm)	(Nm)	(kg)	(kg/m)
25A	49800	27700	733	408	476	265	0.7	3.4
25B	70300	39100	1035	576	936	521	0.9	
35A	93400	52000	2008	1118	1189	662	1.6	6.5
35B	128500	71500	2762	1537	2214	1232	2.2	
45A	167500	93400	4621	2577	2790	1556	3.2	10.7
45B	229500	127800	6333	3527	5161	2874	4.3	
55A	237000	131900	7771	4325	4738	2637	5.0	15.2
55B	324000	180500	10624	5919	8745	4872	6.8	
65B	530000	295000	20912	11640	17930	9980	13.5	22.5

Temperature:

1. The dynamic load and moment ratings are based upon 100 km travel life. When comparing these load ratings with other bearings take into consideration that some manufacturers dynamic and moment ratings are based on 50km travel life. In order to compare with bearing dynamic and moment ratings based on 50km travel life, divide the dynamic capacity of the bearing rated for 50 km by 1.23 to get an accurate comparison.

2. The static load and moment rating are the maximum radial load and moment load that should be applied to the bearing while there is no relative motion between the carriage and rail.

Bearing Travel Life Comparison

 $L = (C/F)^3 \times 100 \text{ km}$ where: L = travel life, km C = dynamic load rating, N F = applied dynamic load, N $C_{\min} = F \left(\frac{L}{100}\right)^{1/3}$ where C_{min} = minimum required dynamic load rating, N F = applied dynamic load, N L = required travel life, km

Operating Parameters: Maximum Velocity: 3 m/s Maximum Acceleration: 50 m/s² Min: - 40° C 80° C Max: Max peak: 120° C short time* without bellows

CXI 1 micron Precision Instrument Stand Preliminary Design Review

Bill Olson wholson@slac.stanford.edu

System Loading

System loading is determined by calculating the center of gravity (cg) of the Frame with instruments for loads on the horizontal actuators/slides and then calculating the cg for the whole Precision Stand system for the loads on the vertical actuators at floor level. Seismic loads were then calculated per SLAC-I-720-0S24E-001 and SLAC Seismic Design Standard-26Sep08 by S. DeBarger. Results are tabularized below with the basic seismic formulae from the SLAC Seismic Standard shown on the next page. The actual calculations required modifications to the formulae shown for the uniqueness of the Precision Stand. The modifications to the formulae were made to transfer the torsional moment at the downstream support to the upstream supports.

	Detect	or Downstr	eam Conf	iguration	Front (upstream) Detector Configuration					
			Seismic			Seismic				
	Static	Vertical		Horizontal	Static	Vertical		Horizontal		
Location	Pounds	1.5m		0.7*Ws	Pounds	1.5m		0.7*Ws		
Downstream Horizontal Slides	2,223	3,335		4,281	1,119	1,678		3,990		
Downstream Vertical Actuator	3,150	4,725		5,443	2,044	3,065		5,152		
		1.5m+E	0.6m+E	0.7m		1.5m+E	0.6m+E			
Upstream Horizontal Slides										
Right	1,860	1,913	239	0	2,185	4,021	568	0		
Left	2,032	3,925	342	2,724	2,396	4,337	695	3,207		
Upstream Vertical Actuators										
Right	2,410	6,003	-942	0	2,742	6,452	-694	0		
Left	2,575	6,251	-843	3,490	2,935	6,741	-579	3,974		

All values in pounds

When is 0.6 * Dead Load More Demanding than 1.5 * Dead Load?

Consider an element of mass m, length 2*a and height 4*a

E= 0.7 * m $\Sigma M E^{2}a+1.5*m^{*}a-Fby^{*}2^{*}a=0$ $0.7*m^{*}2^{*}a+1.5*m^{*}a-Fby^{*}2^{*}a=0$ $1.4*m^{*}a+1.5*m^{*}a=2*Fby^{*}a$ 2.9*m=2*Fby 1.45*m=Fby $\Sigma F 1.5*m - Fby-Fay=0$ $1.5*m - 1.45*m=Fay \quad 0.05*m=Fay$

Consider an element of mass m, length 2*a and height 4*a

E= 0.7 * m $\Sigma M E^{2*a+0.6*m*a}Fby^{2*a=0}$ $0.7*m^{2*a+0.6*m*a}Fby^{2*a=0}$ $1.4*m^{*a+0.6*m*a=2*Fby^{*a}}$ 2.0*m=2*Fby m=Fby $\Sigma F 0.6*m - Fby-Fay=0$ 0.6*m - m=Fay - 0.4*m=Fay

Calculations were made on a conservative basis.

•Loads were rounded up to the next 100 pounds

•Simply supported ends instead of fixed ends were used for the cross beam at the downstream vertical support

•The reaction load at the upstream actuators was used at both the Sample Chamber and Detector locations, but averaged to be equidistant from Frame supports

Item	Tensile Yield	Stress	Safety Factor	Deflection			
	Psi	Psi	On Yield	Inch	Millimeter		
Frame Bending	46,000	711	64.7	0.0043	0.110		
Outriggers, Upstream Support	46,000	2,946	15.6	0.0030	0.076		
Cantilever, Downstream Support	46,000	3,112	14.8	0.0030	0.077		
Cross Beam, Downstream Support	36,000	1,004	35.9	0.0006	0.016		

- Controls issues are being addressed in partnership with the Controls Group
- IMS stepper motors will be used to drive slides/actuators
 - To ensure commonality within LUSI
- Encoder feedback to remote control system
- Limit switches on driven components

- Corners and sharp edges will be radiused or chamfered where possible
- Safety covers will be used on moving elements to prevent "pinch-hazards"
- Limit switches will be provided on all driven hardware, as well as hard stops on driven and non-driven components
- To comply with OSHA/DOE regulations, all electronics will have certification either through a National Recognized Testing Laboratory (NRTL) or the Authority Having Jurisdiction (AHJ) as per the SLAC Electrical Equipment Inspection Program

Summary

- Precision Stand preliminary design is well advanced
- Controls issues are being addressed in partnership with the Controls Group
- Interfaces are closely coordinated with respective design teams
- To Do list
 - Finalize the structural support and floor anchor design
 - Final interface adjustments/modifications
 - Develop an alignment plan
 - Detail the control system in partnership with the Controls Group
 - Seismic peer review
 - Seismic committee approval
 - Design ready to advance to final design

Preliminary Design Review of the CXI Detector Stage

15 MAY 2009

Pegasus Design, Inc.

608-D Main St. Pleasanton, CA 94566 925/426-2386 www.pegasus-design.com

The Starting Point

INITIAL CONCEPTUAL DESIGN: (developed at SLAC)

FIGURE-1

Here we see the initial conceptual design developed at SLAC. It uses paired lift-table/translation stage sub-assemblies to provide X,Y, pitch & yaw motions for fine adjustment. Coarse adjustment of the vacuum chamber is by the familiar six-strut rod-end adjustment system. The detector assembly moves in the Z-axis by means of a long-travel stage in the chamber.

This early-stage conceptual design helped define the problem of moving the 25-pound detector assembly by pointing the way to the use of a MICOS Long Travel stage.

From our study of the initial concept, we learned the major problem to solve is the stability of the 'optical bench'. As you can see in this illustration, the legs look long and spindly. Couple that with the 25-pound detector and its' 2-foot cantilever, and you can imagine how the weight of the detector will be trying to lift the single leg out of its' kinematic mounting socket.

This simplified representation shows how the structure might react to lateral loads. It's resonant frequency is about 28-hertz*

*Double click the illustration to see the flexural response:

Degasus Design, Inc.

INITIAL CONCEPTUAL DESIGN: (continued)

The kinematic mounts as shown in the initial concept appear to be overloaded with regard to the Hertz contact stresses. The detector assembly with translation stage and all it's accoutrements could weigh at least 100-pounds. A seismic restraining system is needed as well.

Another significant problem comes from having the center-ofgravity of the detector above the two lift-tables. When you consider the 45-arc-sec pitch/roll tolerance of the lift-tables, the detector can roll to either side by about +/- 80 microns.

The performance specification calls for a travel range in Pitch/Yaw of +/- 20 mrad (approximately +/- 1-degree). The bellows manufacturers warn users not to put twist in the bellows, but when pressed for data, they admit to allowing about +/- 0.5-degrees.

Pegasus Design, Inc.

INITIAL CONCEPTUAL DESIGN: (continued)

Another design requirement is to route the water cooling lines in a water-containment system. The concept shown below had two .25-inch lines running through a 1.50-inch ID hose with 2.75-inch conflat flanges on each end. The 1.91-inch OD and dynamic bend radius of 11.81-inches meant that the bellows hose would not fit in the 18-inch diameter chamber.

DESIGN ISSUES TO RESOLVE:

The initial detector design was 10-inches in diameter. It is now 11.25-inches in diameter. There now exists only .25-inch radial clearance around the detector. The 12-inch gate valve (with 11.75-inch bore) is the limiting factor.

DESIGN ISSUES TO RESOLVE:

The range of motion specifications and request for mechanical hard-stops were also evaluated. The +/- 20mrad for Pitch/Yaw motions means that with the stage fully extended, the detector could nearly hit the inner bore of the gate valve:

STROKE = 300mm ANGULAR MOTION = 20mrad = 1.146-degrees

300mm x sin(1.146-degrees) = 6mm [.2362"]

If you superimpose the lateral adjustment requirement of +/-5mm, you will have a collision between the detector and the valve bore.

Mechanical hard stops would do nothing to prevent this collision.

DESIGN REQUIREMENTS:

Physics Requirements SP-391-000-28-R0

Engineering Specifications SP-391-000-70-R0

5.1. The CXI Precision Instrument Stand (PRD SP-391-000-63) shall be used to support the CXI Detector Stage.

5.2. The rough alignment of the pitch and yaw angle of the detector stage to the LCLS beam direction which depend on the focusing optics used shall be accomplished using the CXI Precision Instrument Stand (PRD SP-391-000-69).

5.3. The detector stage shall translate in the x and y directions to allow centering of the LCLS beam to within 50 μ m of the center of the hole in the detector for any of the focusing optics (KB0.1, KB1 and unfocused beam).

5.4. The detector stage shall move the detector in the z direction within the range described in requirements 3.1 and 3.2 with a repeatability of 50 μ m.

5.5. The detector stage shall allow fine alignment of the pitch and yaw angle of the z stage to the LCLS to within a repeatability of 0.5 mrad.

5.6. The detector stage shall have the motorized motions listed in Table 5-1. The stability requirement listed means over a period of a few days.

5.7. The in-vacuum translation range along the z-axis shall not be required to be continuous. A minimum continuous range shall be at least 600 mm.

5.8. Spacer vacuum spools shall be used to span the space between the sample chamber and the detector stage when the detector stage is not attached directly to the sample chamber.

5.9. The surface normal of the detector sensing area shall be parallel with direction of travel of the z stage to within $\pm 2^{\circ}$.

Motion	Nominal Position	Range	Resolution	Repeatability	Stability
x	0	-5 mm < x < 5 mm	10 µm	10 µm	1 μm
у	0	-5 mm < y < 5 mm	10 µm	10 µm	1 µm
z	50 mm	50 < z < 2600 mm	50 µm	50 µm	1 µm
Pitch	0 mrad	-20 mrad < z < 20 mrad	100 µrad	100 µrad	10 µrad
Yaw	0 mrad	-20 mrad < z < 20 mrad	100 µrad	100 µrad	10 µrad

Table 5-1: Motion requirements for the detector stage.

2

$$0mr = 1.1460^{\circ} = 1^{\circ}08'46''$$
 $100\mu r = .0057^{\circ} = 0^{\circ}0'21$

$$\frac{180^{\circ}}{10} = 57.2958^{\circ} = 1 - radian$$

$$= 57^{\circ} 17'45'' = 10\mu r = .000573^{\circ}$$

$$= 0^{\circ} 2'06''$$

$$\frac{78D SP.391.000.28}{1000} = .000057^{\circ}$$

$$= 0^{\circ} 3'26'' = 0^{\circ} 0'21''$$

De la companya de la

Our proposed solution.

NEW DEVELOPMENTS:

Based on what we learned from the SLAC early-stage concept, we developed this new concept from an idea proposed by Don Schafer, but first, let us discuss the detector slide assembly.

The Detector Slide Assembly

This first thing we did was to look for a beefier translation stage. The MICOS LS-180 looked to be a likely candidate, but had only 508mm [20"] travel. Upon discussion with SLAC engineers, the travel range was deemed acceptable.

The specifications for the MICOS LS-180 are:

LOAD CAPACITY: 100kg [220-lbs]
PITCH-AXIS MOMENT: 132-Nm [97-foot-pounds]
YAW-AXIS MOMENT: 125-Nm [92-foot-pounds]
BI-DIRECTIONAL REPEATABILITY: +/- 0.2 microns

•INTEGRAL LIMIT SWITCHES •RECIRCULATING BALL DRIVE SCREW

The vacuum specifications from the MICOS website are:

"Vacuum Stepper Motors For most of our IN-VACUUM stages, PHYTRON offers two different grades, a High vacuum to 10-6 torr and Ultra-High vacuum to 10-9 torr. For each grade; bearings, lubricants, adhesives, coatings, insulation and material cleaning, handling and packaging is used. Due to its simple design, PHYTRON stepping motor is used as the drive for all our IN-VACUUM stages".

The obvious question is, "Will it fit in the chamber?". Yes, it appears to fit quite nicely. We have modified the original chamber substantially, but it's nominally the same size. You can see the D-connector at the back will be easy to access.

This illustration shows the general arrangement of the slide assembly in the retracted position:

The GORTRAC cable guide shown in our design concept can meet the bend radius requirement for the bellows hose. Any doubt about the viability of their use in vacuum was dispelled when a similar system was seen in use on the NIF-laser at the Lawrence Livermore National Laboratory.

The NIF-diagnostic instruments (which we are also working on for LLNL) extend from the chamber wall to almost the center of the 40-foot diameter target chamber. Cable guides are used in vacuum to connect the diagnostic instrument to the outside electronics.

This illustration shows the slide assembly in the fully extended position, 508mm stroke [20"]. Shown in lavender is the 6-inch conical clear aperture zone.

FIGURE-15

The most challenging aspect of the slide assembly is routing the water-containment bellows hoses. We propose using welded-leaf bellows near the end of the convoluted bellows to allow access to the .25" VCR fittings.

The back-shell of the detector will need to be modified as shown to accommodate our design. The data cables will be bundled separately from the motor power cables and routed alongside the water containment bellows hoses. Note VCRfittings.

The Optical Bench

FIGURE-18

NEW DEVELOPMENTS: (continued)

The optical bench is supported by Hephaist Seiko precision swivel joints on translation stages. Re-entrant bellows to reduce the overall width are shown. In medium blue is the Parker ZP200 Lift Table.

Lift table specifications:

ZP200 Specifications

		Precision	Standard
	Travel (Z-axis)	25 mm (limit to limit)	25 mm (limit to limit)
	Positional Accuracy with no encoder ^{1,2,7} with linear encoder ^{3,6,7}	8 μm 8 μm	20 µm
	Positional Repeatability with no encoder ^{1,7} with 1.0 µm linear encoder ^{6,7} with 0.5 µm linear encoder ^{6,7} with 0.1 µm linear encoder ^{6,7}	± 3 μm ± 5 μm ± 4 μm ± 3 μm	± 10 μm
	Lift Lead Ratio ⁴ 5 mm lead ballscrew drive 10 mm lead ballscrew drive 20 mm lead ballscrew drive	1.8199 3.6397 7.2794	mm/rev mm/rev mm/rev
	Lift Velocity 5 mm lead ballscrew drive 10 mm lead ballscrew drive 20 mm lead ballscrew drive	110 m 220 m 440 m	im/sec im/sec im/sec
	Load Capacity (normal)	15 kg (33 lb)	75 kg (165 lb)
	Duty Cycle	10	0%
	Max Acceleration	7.2 m	v/sec ²
	Efficiency	90	0%
	Max Breakaway Torque ⁵	0.15	i Nm
	Max Running Torque⁵	0.13	Nm
	Linear Bearing – Coefficient Of Friction	0.	01
	Ballscrew Diameter	16	mm
	Unit Weight	5.8	2 kg
	Top Plate Weight	2.2	5 kg
	Pitch ⁷	± 15 Arc-sec	± 45 Arc-sec
	Roll ⁷	± 15 Arc-sec	± 25 Arc-sec
FIGURE-19	Input Inertia 5 mm lead ballscrew drive 10 mm lead ballscrew drive 20 mm lead ballscrew drive	2.32 × 10 2.51 × 10 3.12 × 10) ⁻⁵ Kg-m²) ⁻⁵ Kg-m²) ⁻⁵ Ka-m²

 Measured 38 mm directly above the true center of the top mounting surface.

- 2) Measured using calibrated lead value (provided).
- 3) Slope correction value provided
- Lift per 1 motor shaft revolution. Lift lead listed is nominal. All units are provided with calibrated lead value.
- 5) Torque ratings are measured with unit unloaded, traveling upward.
- 6) Measured directly over encoder on outer edge.
- 7) Pitch and Roll Specifications are measured with <1kg load. Addition of load increases pitch and roll error by 10 arc-sec per 5 kg of load assuming the load center of gravity is located at the center of the stage platform Cantilevered loading increases these errors more.

Parker 404XR translation stage specifications:

					404XF	2	406XF	2
Com	mon Cha	racterist	tics	Precisi	ion	Standard	Precision	Standard
Perfo	ormance							
Bidire	ectial Rep	eatability	(μm)	+/-1.3	3	+/-3.0	+/-1.3	+/-3.0
Duty	Cycle			100%	6	100%	100%	100%
Max	Accelerat	ion – m/s	ec ² (in/sec ²)	20 (77	3)	20 (773)	20 (773)	20 (773)
Rate	d Capaci	ty					Contraction of the second	
Norm	nal load -	kgf (lbs)		170 (37	75)	170 (375)	630 (1390)	630 (1390)
Axial	load - kg	f (lbs) Ba	Illscrew	90 (19	(8)	90 (198)	90 (198)	90 (198)
sinin iyoni.	122216 - 523	Le	eadscrew	n/a	32	25 (55)		
Moto	or Sizing							
Drive	Screw E	fficiency	Ballscrew	90%	ě.	90%	90%	80%
			Leadscrew	30%		30%		
Max	Break-Aw	ay Torqu	ie – Nm (in-oz)					
	0 to 6	500 mm T	ravel	0.13 (1	18)	0.18 (26)	0.13 (18)	0.18 (26)
	600 t	o 2000 m	m Travel	na		na	na	0.39 (55)
Max	Running *	Torque -	Nm (in-oz)				0.000	
	0 to 6	500 mm T	ravel	0.11 (1	16)	0.17 (24)	0.11 (16)	0.17 (24)
	600 t	o 2000 m	m Travel	na		na	na	0.34 (48)
Linea	ar Bearing	- Coeffi	cient of Friction	0.01		0.01	0.01	0.01
Balls	crew Diar	neter (mr	m)	16		16	Refer to chart o	n page 13
Carri	age Weig	ht – kg (l	bs)	0.70 (1.	.55)	0.70 (1.55)	2.7 (5.94)	2.7 (5.94)
AXR avel	4XR Positional ⁽²⁾ avel Accuracy (μm)		Straightness & Flatness Accuracy	Input	Inertia 1	0 ⁻⁵ kg-m ²	Max Screw Speed (Revs Per Second)	Total Tab Weight (k
mm)	Prec.	Std.	(µm) Prec./Std.	5 mm	10 mn	1 20 mm	Fied./Stu.	Fiec./Std
50	8	12	6	1.68	1.81	2.34	60	2.8
11111	1 8	12	6	1 0 2	2.07	2 60	60	3.0

(mm)	mm) Prec. Std.		(µm) Prec./Std.	5 mm	10 mm	20 mm	Prec./Std.	Prec./Std.
50	8	12	6	1.68	1.81	2.34	60	2.8
100	8	12	6	1.93	2.07	2.60	60	3.0
150	10	14	9	2.19	2.32	2.85	60	3.3
200	12	20	10	2.44	2.57	3.11	60	3.6
250	12	22	12	2.69	2.83	3.36	60	3.9
300	14	24	13	2.95	3.08	3.61	60	4.2
350	14	26	15	3.20	3.33	3.87	60	4.5
400	16	26	16	3.46	3.59	4.12	60	4.8
450	19	28	18	3.71	3.84	4.37	60	5.1
500	21	34	19	3.96	4.10	4.63	60	5.4
550	23	36	21 4.22 4.35 4.88 60		60	5.7		
600	600 25 40		22	4.47	4.60	5.14	54	6.0

406XR Travel	Positi	onal ⁽²⁾ icy (um)	Straightness & Flatness Accuracy	li	nput Inerti	a 10 ⁻⁵ kg-	Max Screw Speed (Revs Per Second)	Total Table Weight (kg)	
(mm)	Prec.	Std.	(µm) Prec./Std.	5 mm	10 mm	20 mm	25 mm	Prec./Std.	Prec./Std.
100	8	12	6	3.34	3.85	5.90	-	60	8.7
200	12	20	10	3.92	4.43	6.48	-	60	10.0
300	14	24	13	4.50	5.01	7.06		60	11.3
400	16	26	16	5.08	5.59	7.64		60	12.6
500	21	34	19	5.65	6.17	8.22	-	55	13.9
600	25	40	22	6.23	6.75	8.80		44	15.2
700	-	92	25	36.51	37.02	-	40.61	47	19.2
800	-	94	29	39.96	40.47	-	44.07	47	20.7
900		103	32	43.41	43.93		47.52	47	22.2
1000	-	105	35	46.87	47.38	-	50.97	47	23.7
1250	-	118	42	55.50	56.01		59.61	35	27.6
1500		134	50	64.14	64.65		68.24	26	31.4
1750		154	57	72.77	73.28		76.88	20	35.2
2000	-	159	65	81.40	81.92		85.51	16	39.1

14

www.parkermotion.com

Parker Hannifin Corporation

1140 Sandy Hill Road

Invin PA 15642

FIGURE-20

-Parker

Our Optical Bench concept uses a 'dropped axle' with a single post at the back.

FIGURE-21

This transparent view shows the back leg with a large diameter mounting flange. All three legs are threaded to allow conflat flanges to 'spun on' and tightened.

The stability of the optical bench is due to the wide stance of the dropped axle.

The dropped axle and center leg are fed through the chamber ports. The optical bench is put in position and bolted in place.

This underside view shows the bench before installing the reentrant bellows and conflat flanges.

Slotted right-angle brackets are then added to provide the attachment points for the precision swivel joints.

Here is a side-by-side comparison of the old and the new:

INITIAL CONCEPTUAL DESIGN: (continued)

With the detector at full extension, the fundamental Mode-1 response is about 35-hertz*

*Double click the illustration to see the flexural response:

This cut-away view shows the general arrangement of our 'dropped axle' concept.

This cross-section through the re-entrant bellows shows the spun-on Conflat flange (in medium grey), the universal mounting bracket and the Hephaist Seiko precision swivel joint sitting on translation stages.

Here we see the optical bench and re-entrant bellows assembled and ready to receive the detector slide assembly.

The Vacuum Chamber.

Shown here is the stainless steel vacuum chamber weldment. Wire-seal end flanges are shown at both ends. The chamber is approximately 43-inches long and 18-inches in diameter. The wall thickness is .125-inch.

This illustration shows the chamber with all bellows assemblies installed. The front bellows has threaded fittings to support the bellows during servicing, and to transfer the ~1600-pound axial load when under vacuum.

This illustration shows the coolant feed-thru flange to allow the water-containment lines to exit out the side of the chamber.

This concept has the following features:

- 1) MICOS LS-180 with 508mm (20") travel
- 2) Kinematic mounting features with wide stance
- 3) Cantilever load has been removed from lift table
- 4) Cantilever load has been removed from translation stage
- 5) Detector assembly can be installed from one end
- 6) Dual hoses for water containment of detector cooling lines
- 7) Dual cable guides for bellows and electrical cables

Can we proceed with this concept?

The end.

Cost & Schedule: CXI 1 micron Precision Instrument Stand and Detector Stage

Paul Montanez

CXI Lead Engineer/CAM

May 15, 2009

Schedule

- Through month end April
 - WBS 1.3.05.01.02: CXI 1 micron Precision Instrument Stand
 - WBS 1.3.05.01.03: CXI Detector Stage
- Cost
 - Through month end March
- Variances

Summary

CXI 1 micron Precision Instrument Stand

Arrows	indicate
OCT '08	8 baseline
dates	

	Activity	Orig	Total	Early	Early	
	Description	Dur	Float	Start	Finish	
	1.3.05.01.02 CXI Precision Inst	trume	ent S	tands		
	9110355 Design & Engr - CXI Precision In	strum	ent Sta	nd		
	START: CXI 1.0um Precision Instrument Stand	0		04/01/06A		START: CXI 1.0um Precision Instrument Stand May 1
	Generate PRD - CXI 1.0um Prec Instr Std	15		05/12/08A	06/23/08A	Generate PRD - CX0 .0um Precinstr Std
	COMP: PRD Released - CXI 1.0um Prec Instr Std	0			06/23/08A	COMP: PRD Released - CXI 1.0um Prec Instr Std
_	Apr08 through Sep08 Plan Adjustment	21		09/01/06A	09/30/08A	Apr08 through Sep08 Plan Adjustment
	Generate ESD (0-60%) - CXI 1.0um Prec Instr Std	202		04/01/06A	10/31/08A	Generale ESD (0-60%) - CXI 1.0um Prec Instr Std
	Generate ESD (61-100%)- CXI 1.0um Prec Instr St	-*-	/	01/26/09A	02/06/09A	Generale ESD (51-100%)- CXI 1.0um Precimstr St
	COMP: ESD Released - CXI 1.0um Prec Instr Std	0			02/05/09A	COMP: ESD Released - CXI 1.0um Prec Instr Std
	9120355 Design & Engr - CXI Precision In	strum	ent Sta	nd		
	Prelim Design - CXI 1.0um Prec Instr Std	30	18	04/01/09A	05/15/09	V Preilim Design - CXI 1.0um Prec Instr Std
	Prelim Engr Analysis - CXI 1.0um Prec Instr Std	20	18	04/15/09A	05/15/09	Preilm Engr Analysis - CXI 1.0um Prec Instr Std
	Controis Interface & Integ - CXI 1.0um Prec Inst	4	773	05/18/09	05/21/09	Controls Interface & Integ - CXI 1.0um Prec Inst
	Prep for PDR - CXI 1.0um Prec Instr Std	7	18	05/06/09	05/14/09	Prep for PDR - CXI 1.0um Prec Instr Std
	PDR - Prelim Design Review - CXI 1.0um Prec Inst	1	18	05/15/09	05/15/09	↓ XPDR - Prislim Design Review - CXI 3.0um Prec Inst
	Final Engr Analysis - CXI 1.0um Prec Instr Std	9	244	05/18/09	05/28/09	Arr Final Engr Analysis - CXI 1.0um Prec Instr Std
	Final Design - CXI 1.0um Prec Instr Std	12	244	05/29/09	06/15/09	44 ⊿⊽Final Design - CXI 1.0um Prec Instr Std
	Generate Assy & Detail Dwgs-CXI 1.0um Prec Instr	25	244	06/08/09	07/10/09	Generate Assy & Detail Dwgs-CXI 1.0um Prec Instr
	Prep for FDR - CXI 1.0um Prec Instr Std	5	228	08/04/09	08/10/09	Prep for FDR - CXI 1.0um Prec Instr Std
	FDR - Final Design Review - CXI 1.0um Prec Instr	1	228	08/11/09	08/11/09	₩FDR - Final Design Review - CXI 1.0um Prec Instr
	Prep for Selamic Review - CXI 1.0um Prec Instr	5	228	05/18/09	05/22/09	Prep for Seismic Review - CXI 1.0um Prec Instr
	Seismic Peer Review - CXI 1.0um Prec Instr Std	20	228	05/25/09	06/19/09	Selemic Peer Review - CXI 1.0um Prec Instr Std
	Seismic Review Approval - CXI 1.0um Prec Instr	1	228	06/22/09	06/22/09	∑Seismic Review Approval - CXI 3.0um Prec Instr
	COMP: Committee Approval - CXI 1.0um Prec Instr	0	228		08/03/09	COMP: Committee Approval - CXI 1.0um Prec Instr
	Incorp FDR Changes - CXI 1.0um Prec Instr Std	6	228	08/12/09	08/19/09	Tincorp FDR Changes - CXI 1.0um Prec Instr Std

Schedule Status (2)

CXI Detector Stage May 1 Early Orig Total Activity Early FY10 FY11 FY12 **FY08** FY09 FY12 Description Dur Float Start Finish 1.3.05.01.03 CXI Detector Stage 9110359 Design & Engr - CXI Detector Stage START: CXI Detector Stage 12/03/07A 0 START: CXI Detector Stage Generate PRD - CXI Detector Stage 122 12/03/07A 06/23/08A Generate PRD - CXI Detector Stage COMP: PRD Released - CXI Detector Stage 06/23/08A 0 COMP: PRD Released - CXI Detector Stage 132 10/31/08A Generate ESD (0-60%) - CXI Detector Stage 04/01/08A Arrows indicate Generate ESD (0-60%) - CXI Detector Stage Generate ESD (61-100%)- CXI Detector 25 02/02/09A 02/18/09A Generate ESD (61-100%)- CXI Detector Stage OCT '08 baseline Stage COMP: ESD Released - CXI Detector Stage 0 02/18/09A COMP: ESD Released - CXI Detector Stage dates Apr08 through Sep08 Plan Adjustment 21 09/01/08A 09/30/08A Apr08 through Sep08 Plan Adjustment Prelim Design (0-60%) - CXI Detector Stage 120 04/01/08A 10/31/08A Prelim Design (0-60%) - CXI Detector Stage 4 4 Prelim Design (61-100%) - CXI Detector 30 13 03/18/09A 05/14/09 Prelim Design (61-100%) - CXI Detector Stage Stage . Controis Interface & Integ - CXI Detector 05/01/09 05/06/09 4 19 Controls Interface & Integ - CXI Detector Stage Stage 44 Prelim Engr Analysis - CXI Detector Stage 12 13 04/01/09A 05/14/09 Prelim Engr Analysis - CXI Detector \$tage Prep for PDR - CXI Detector Stage 05/15/09 05/21/09 5 13 Prep for PDR - CXI Detector Stage 4 PDR - Prelim Design Review - CXI Detector 05/22/09 05/22/09 13 1 PDR - Prelim Design Review - CXI Detector Stage Stage Final Engr Analysis - CXI Detector Stage 5 151 05/25/09 05/29/09 Final Engr Analysis - CXI Detector Stage 07/03/09 Final Design - CXI Detector Stage 25 151 06/01/09 Final Design - CXI Detector Stage Generate Assy & Detail Dwgs - CXI Detector 50 156 07/06/09 09/11/09 Generate Assy & Detail Dwgs - CXI Detector Stage Stage 09/18/09 Prep for FDR - CXI Detector Stage 5 156 09/14/09 ZPrep for FDR - CXI Detector Stage т 151 09/28/09 09/28/09 FDR - Final Design Review - CXI Detector 1 FDR - Final Design Review - CXI Detector Stage Stage 151 09/29/09 10/05/09 Incorp FDR Changes - CXI Detector Stage 5 Vincorp FDR Changes - CXI Detector Stage Prep for Selamic Review - CXI Detector 10 151 06/22/09 07/03/09 Prep for Selamic Review - CXI Detector Stage Stage 07/06/09 07/31/09 Seismic Peer Review - CXI Detector Stage 20 151 Seismic Peer Review - CXI Detector Stage Seismic Review Approval - CXI Detector Stage 151 06/03/09 08/03/09 1 Selemic Review Approval - CXI Detector Stage COMP: Committee Approval - CXI Detector 0 151 09/14/09 O COMP: Committee Approval - CXI Detector Stage Stage

Cost Status

CXI 1 micron Precision Instrument Stand

Control Account	Work Package		FY20	08	FY2009	Y2010	FY2011	FY2012	Cu	mulative
1.3.05.01 CXI Room Temperatu	ire Environment									
	9110355 Design & Engr - CXI Precision Instrument Stand	BCWS	\$	168	\$ 5,516	\$ 113,467	\$-	\$ -	\$	119,151
		BCWP	\$	171	\$ 10,048	\$-	\$-	\$ -	\$	10,218
		ACWP	\$	168	\$ 6,497	\$-	\$-	\$ -	\$	6,664
	9110356 Procurement - CXI Precision Instrument Stand	BCWS	\$	-	\$-	\$ 40,747	\$-	\$ -	\$	40,747
		BCWP	\$	-	\$-	\$-	\$-	\$ -	\$	-
		ACWP	\$	-	\$-	\$-	\$-	\$ -	\$	-
	9110357 Fab & Assembly - CXI Precision Instrument Stand	BCWS	\$	-	\$-	\$77,687	\$-	\$ -	\$	77,687
		BCWP	\$	-	\$-	\$-	\$-	\$ -	\$	-
		ACWP	\$	-	\$-	\$-	\$-	\$ -	\$	-
	9110358 Testing - CXI Precision Instrument Stand	BCWS	\$	-	\$-	\$ 2,998	\$-	\$ -	\$	2,998
		BCWP	\$	-	\$-	\$-	\$-	\$ -	\$	-
		ACWP	\$	-	\$-	\$-	\$-	\$ -	\$	-
Control Account Totals:		BCWS	\$	168	\$ 5,516	\$ 234,900	\$-	\$ -	G	240,584
		BCWP	\$	171	\$ 10,048	\$-	\$ -	\$ -	\$	10,218
		ACWP	\$	168	\$ 6,497	\$-	\$ -	\$ -	\$	6,664

Control Account				CU	MUL		AT COMPLETION								
Work Package					4	ACTUAL									
	E	BUDGET	ED CO	ST		COST	VARI	ANCE							
	wo	RK		NORK		WORK				BUDG	ETED	E	STIMATED	١	VARIANCE
	SCHED	ULED	PER	FORMED	PEF	RFORMED	SCHEDULE		COST						
1.3.05.01 CXI Room Temperature Environment															
9110355 Design & Engr - CXI Precision Instrument Stand	\$	5,683	\$	10,218	\$	6,664	\$ 4,535	\$	3,554	\$ 1:	19,151	\$	118,837	\$	314
9110356 Procurement - CXI Precision Instrument Stand	\$	-	\$	-	\$	-	\$	\$	-	\$ 4	40,747	\$	40,902	\$	(155)
9110357 Fab & Assembly - CXI Precision Instrument Stand	\$	-	\$	-	\$	-	\$ -	\$	-	\$	77,687	\$	77,687	\$	0
9110358 Testing - CXI Precision Instrument Stand	\$	-	\$	-	\$	-	\$ -	\$	-	\$	2,998	\$	2,998	\$	-
Control AccountTotals:	\$	5,683	\$	10,218	\$	6,664	\$ 4,535	\$	3,554	\$ 24	40,584	\$	240,425	\$	159

CXI Detector Stage

Control Account	Work Package		FY2	2008	FY2	.009	FY20	10	FY20	011	FY2012	Cu	mulative
1.3.05.01 CXI Room Temperat	ure Environment												
	9110359 Design & Engr - CXI Detector Stage	BCWS	\$	1,699	\$	133,713	\$	-	\$	-	\$-	\$	135,411
		BCWP	\$	1,699	\$	12,121	\$	-	\$	-	\$-	\$	13,821
		ACWP	\$	1,699	\$	2,530	\$	-	\$	-	\$-	\$	4,229
	9110360 Procurement - CXI Detector Stage	BCWS	\$	-	\$	-	\$	107,703	\$	-	\$-	\$	107,703
		BCWP	\$	-	\$	-	\$	-	\$	-	\$-	\$	-
		ACWP	\$	-	\$	-	\$	-	\$	-	\$-	\$	-
	9110361 Fab & Assembly - CXI Detector Stage	BCWS	\$	-	\$	8,908	\$	69,305	\$	6,892	\$-	\$	85,104
		BCWP	\$	-	\$	-	\$	-	\$	-	\$-	\$	-
		ACWP	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-
	9110362 Testing - CXI Detector Stage	BCWS	\$	-	\$	-	\$	-	\$	1,871	\$-	\$	1,871
		BCWP	\$	-	\$	-	\$	-	\$	-	\$-	\$	-
		ACWP	\$	-	\$	-	\$	-	\$	-	\$-	\$	-
Control Account Totals:		BCWS	\$	1,699	\$	142,620	\$	177,007	\$	8,763	\$ -	\$	330,090
		BCWP	\$	1,699	\$	12,121	\$	-	\$	-	\$-	\$	13,821
		ACWP	\$	1,699	\$	2,530	\$	-	\$	-	\$-	\$	4,229

Control Account				CUI	ΝU		AT COMPLETION								
Work Package						ACTUAL									
		BUDGET	ED (COST		COST	VARIA	٩NC	E						
		WORK		WORK		WORK				В	UDGETED		ESTIMATED		VARIANCE
	SC	HEDULED	Р	PERFORMED		PERFORMED	SCHEDULE		COST						
1.3.05.01 CXI Room Temperature Environment															
9110359 Design & Engr - CXI Detector Stage	\$	54,277	\$	13,821	\$	4,229	\$ (40,456)	\$	9,592	\$	135,411	\$	133,562	\$	1,849
9110360 Procurement - CXI Detector Stage	\$	-	\$	-	\$	-	\$ -	\$		\$	107,703	\$	108,113	\$	(410)
9110361 Fab & Assembly - CXI Detector Stage	\$	-	\$	-	\$	-	\$ -	\$	-	\$	85,104	\$	84,322	\$	782
9110362 Testing - CXI Detector Stage	\$	-	\$	-	\$	-	\$ -	\$	-	\$	1,871	\$	1,799	\$	72
Control Account Totals:	\$	54,277	\$	13,821	\$	4,229	\$ (40,456)	\$	9,592	\$	330,090	\$	327,795	\$	2,294

Performance Indices

- Schedule Performance Index (SPI) = BCWP/BCWS
 - BCWP: Budgeted Cost of Work Performed
 - BCWS: Budgeted Cost of Work Scheduled
- Cost Performance Index (CPI) = BCWP/ACWP
 - ACWP: Actual Cost of Work Performed
- CXI 1 micron Precision Instrument Stand cumulative data through March
 - SPI=1.80
 - Engineering & Design effort was scheduled to start in FY10 (Oct 09) but W. Olson joined the CXI team mid-March and started work immediately on the Precision Instrument Stand, i.e. work was performed sooner than scheduled
 - CPI=1.53
 - Documentation efforts performed as LOE activities
- CXI Detector Stage cumulative data through March
 - SPI=0.26
 - Engineering/Design was scheduled to start Jan '09 but we didn't have resources available until Pegasus was on-board in mid-March → behind schedule
 - CPI=3.27
 - Abnormally high since we weren't spending money on design effort but rather only on documentation (ESD & SOW) and much of that effort was accomplished as LOE

Summary

- Performance indices should be much improved for the next reporting period
 - April actuals will be folded-in
- Preliminary designs are advanced beyond what has typically been considered "PDR ready", this puts in good position as far as schedule is concerned
 - PDRs are a prerequisite for FIDR (to be held June 3rd)
 - Significant "float" remaining
- Cost & schedule in good shape for both the CXI 1 micron Precision Instrument Stand and Detector Stage

End of Presentation

Activity	Orig	Total	Early	Early	
Description	Dur	Float	Start	Finish	FY08 FY09 FY10 FY11 FY12
Check & America Dura, 2011 4 Dura Dura Inda Did	- C	000	00/00/00	00/07/00	۱
Check & Approve Dwgs - CALL.uum Precimur Sid	•	220	00/20/09	00/27/09	Approve Dwgs - CXI 1.0um Prec Instr Std
Generate Mfg Docs - CXI 1.0um Prec Instr Std	20	235	08/28/09	09/24/09	
-					Constraint and the state of the
9120356 Procurement - CXI Precision Ins	trume	nt Star	nd		
Procurement Preps - CXI 1.0um Prec Instr Std	30	228	08/28/09	10/08/09	A Procurement Prace - CXI 1 Jum Prec Instr Stri
AWARD: PO - All Parts CXI 1.0um Prec Instr Std	1	212	11/02/09	11/02/09	AWARD: PO - All Parts CXI 1.0um Prec Instr Std
Vender Effect - All Darts CVI 1 Rum Pres Instr	85	212	11/03/00	03/17/10	
Vendor Endre All Parlo GALLouin Piec indu		212	11/03/05	03/17/10	Vendor Effort - All Parts CXI 1.0um Pre¢ Instr
RCV: All Parts CXI 1.0um Prec Instr Std	0	212		03/17/10	
					V RCV: All Parts CXI 1.00m Precinstratio
9120357 Fab & Assembly - CXI Precision	Instru	ment S	Stand		
Inspect Procured Parts - CXI 1.0um Prec Instr St	10	212	03/18/10	03/31/10	₩ Millingnant Droksurari Darte - CYI 1 0um Drac Instr St
Submit Shop Orders - CXI 1.0um Prec Instr Std	1	235	09/25/09	09/25/09	Submit Shop Orders - CXI 1.0um Prec Instr Std
Pressers MED Insut - CVI 1 0um Pres Instr Std	10	225	00/29/00	10/00/00	
Process MPD input - CALLUUM Precilius Stu	10	230	09/20/09	10/09/09	Process MFD Input - CXI 1.0um Prec Instr Std
Machining Processes - CXI 1.0um Prec Instr Std	70	235	10/12/09	02/02/10	
······································					Machining Processes - CX0 1.0um Prec Instr Std
Welding - CXI 1.0um Prec Instr Std	15	235	02/03/10	02/23/10	↓↓ WAbirling _ CYLII (Jum Drop Instr Stri
RCV: Fab Parts CXI 1.0um Prec Instr Std	0	235		02/23/10	RCV: Fab Parts CXI 1.0um Prec Instr Std
Increase Eab Darts - CVI 1 Dum Drea Instr Std	2	225	02/24/10	02/26/10	
Inspect Pab Parts - GAT I. built Prec Insu Su	3	230	u2/24/10	u2/20/10	⊠inspect Fab Parts - CXI 1.0um Prec InstriStd
Assemble Parts - CXI 1.0um Prec Instr Std	10	212	04/01/10	04/14/10	
					Assemble Parts - CXI 1.0um Prec Instr Std
9120358 Testing - CXI Precision Instrume	ent Sta	nd			
Final Test - CXI 1.0um Prec Instr Std	5	212	04/15/10	04/21/10	Final Tast, CYI 1 Jum Dras Instr Bird
AVAIL: CXI 1.0um Prec Inst Ready For Install	0	212		04/21/10	AVAIL: CXI 1.0um Prec Inst Ready For Install
	1	1	1	1	· · · · · · · · · · · · · · · · · · ·

Backup Material: Schedule (2)

Activity	Orig	Total	Early	Early	5400	510		5440	5 2444	51/10
Description	Dur	Float	Start	Finish		FYUS			Enii	F112
Check & Approve Dwgs - CXI Detector Stage	5	151	10/06/09	10/12/09			+	Check & Approve Dwgs	CXI Detector Stage	
Generate Mfg Docs - CXI Detector Stage	20	200	10/13/09	11/09/09]		•••	Generate Mfg Docs - C	XI Detector Stage	
9120360 Procurement - CXI Detec	tor Sta	ge			1					
Procurement Preps - Vdr Parts CXI Detector Stage	30	151	10/13/09	11/23/09]		• •	Procurement Preps -	Vdr Parts CXI Detector Stage	
AWARD: PO - All Vdr Parts CXI Detector Stage	1	151	11/24/09	11/24/09]			AWARD: PO - All Vdr	Parts CXI Detector Stage	
Vendor Fab - All Vdr Parts CXI Detector Stage	120	151	11/25/09	05/27/10]			∠ Vendor	Fab - All Voir Parts CXI Dete	tor Stage
RCV: All Vendor Parts CXI Detector Stage	0	151		05/27/10				♦ RCV: A	Il Vendor Parts CXI Detector	Stage
9120361 Fab & Assembly - CXI De	tector	Stage								
Inspect Procured Parts-All CXI Detector Stage	2	151	05/28/10	05/31/10] [<u></u> inspect	Procured Parts-All CXI Dete	ctor Stage
Submit Shop Orders - CXI Detector Stage	1	200	11/10/09	11/10/09]		'	Submit Shop Orders -	CXI Detector Stage	
Process MFD Input - CXI Detector Stage	10	200	11/11/09	11/24/09]		"	Process MFD Input - (CXI Detector Stage	
Machining Processes - CXI Detector Stage	50	200	11/25/09	02/18/10]			Machining Proc	seses - CXI Detector Stage	
Weiding - CXI Detector Stage	8	200	02/19/10	03/02/10]	1		₩	Detector Stage	
Vacuum Leak Check - CXI Detector Stage	8	200	03/03/10	03/12/10	1			↓ J Vacuum Leak	Check - CXI Detector Stage	
Inspect Fab Parts - CXI Detector Stage	7	200	03/15/10	03/23/10	1			Inspect Fab.	Parts - CXI Detector Stage	
RCV: Fab Parts CXI Delector Stage	0	200		03/23/10				+ 🔶 RCV: Fab Pi	arts CXI Detector Stage	
Clean - CXI Detector Stage	10	151	06/01/10	06/14/10				در Clean	-CXI Detector Stage	
RCV: Cornell Detector from LCLS	0	275		12/08/09*	1			RCV: Cornell Detect	or from LCLS	
Assemble Parts - CXI Detector Stage	15	151	06/15/10	07/05/10	1			Asse	4 mble Parts - CXI Detector St	age
REQD: Stage Controls HW & SW	0	204		04/21/10]			🔶 REQD: St	age Controls HW & SW	
Connect Controls - CXI Detector Stage	3	151	07/06/10	07/08/10]			Con	Anect Controls - CXI Detector	Stage
Vacuum Process - CXI Detector Stage	1	151	07/09/10	07/09/10] [∑ Vac	um Process - CXI Detector :	stage
Pre-Survey - CXI Detector Stage	1	151	07/12/10	07/12/10				<u>—</u> Рге-	4 \$urvey - CXI Detector Stage	
9120362 Testing - CXI Detector St	age				1					
Final Test - CXI Detector Stage	3	151	07/13/10	07/15/10				<u>∏</u> Fina	Test - CXI Detector Stage	
AVAIL: Ready For Installation CXI Detector Stage	0	151		07/15/10				🌖 AV	4 AIL: Ready For Installation C	XI Detector Stage

Backup Material: Schedule (3)

Month end March schedule: Precision Stand

Activity	Orig	Total	Early	Early	EV00
Description	Dur	Float	Start	Finish	
1.3.05.01.02 CXI Precision Inst					
9110355 Design & Engr - CXI Precision In	strum	ent Sta	and		1
START: CXI 1.0um Precision Instrument Stand	0		04/01/08A		STAR
Generate PRD - CXI 1.0um Prec Instr Std	15		05/12/08A	06/23/08A	🖬
COMP: PRD Released - CXI 1.0um Prec Instr Std	0			06/23/08A	
Apr06 through Sep08 Plan Adjustment	21		09/01/06A	09/30/06A	
Generate ESD (0-60%) - CXI 1.0um Prec Instr Std	202		04/01/08A	10/31/08A	
Generate ESD (61-100%)- CXI 1.0um Prec Instr Std	9		01/26/09A	02/06/09A	
COMP: ESD Released - CXI 1.0um Prec Instr Std	0			02/06/09A	
Prelim Design - CXI 1.0um Prec Instr Std	30	61	03/18/09A	05/07/09	
Prelim Engr Analysis - CXI 1.0um Prec Instr Std	20	68	04/01/09	04/28/09	
Controis interface & integ - CXI 1.0um Prec Inst	4	84	04/01/09	04/06/09	
Prep for PDR - CXI 1.0um Prec Instr Std	5	61	05/08/09	05/14/09	
PDR - Prelim Design Review - CXI 1.0um Prec Inst	1	61	05/15/09	05/15/09	
Final Engr Analysis - CXI 1.0um Prec Instr Std	9	244	05/18/09	05/28/09	
Final Design - CXI 1.0um Prec Instr Std	12	244	05/29/09	06/15/09	
Generate Assy & Detail Dwgs-CXI 1.0um Prec Instr	25	244	06/08/09	07/10/09	
Prep for FDR - CXI 1.0um Prec Instr Std	5	228	08/04/09	08/10/09	
FDR - Final Design Review - CXI 1.0um Prec Instr	1	228	08/11/09	08/11/09	
Prep for Selamic Review - CXI 1.0um Prec Instr	5	228	05/18/09	05/22/09	1
Seismic Peer Review - CXI 1.0um Prec Instr Std	20	228	05/25/09	06/19/09	
Selsmic Review Approval - CXI 1.0um Prec Instr	1	228	06/22/09	06/22/09	
COMP: Committee Approval - CXI 1.0um Prec Instr	0	228		08/03/09	
Incorp FDR Changes - CXI 1.0um Prec Instr Std	6	228	08/12/09	08/19/09	1
Check & Approve Dwgs - CXI 1.0um Prec Instr Std	6	228	06/20/09	08/27/09	

F	<u>Y09</u>	FY10	FY11	FY12
			1	
			1	
RT: CXI 1.0um Pre	cision instrum	ent Stand		
Generate PRD - C	30 1.0um Prec	instr Std	1	
t			1	
COMP: PRD NBIG	8860 - CXI 1.0	um Prec instristo	1	
Apr08 thro	u <mark>g</mark> h Sep08 Pla	an Adjustment		
Generat	ESD (0-60%)	- CXI 1 0um Prec Instr Std		
#				
	enerate ESD ((61-100%)- CXI 1.0um Prec	instr Std	
	OMP: ESD R	leased - CXI 1.0um Prec I	hetr Sta	
	<u> </u>			
	Prelim D	ésign - CXI 1.0um Prec Ins	tr Stol	
	Prelim Er	igr Analysis - CXI 1.0um P	ec instr Std	
	4 Controls in	artaas 8 Indaa - CVI 1 Cum	Dime last	
		ienace & meg - CAI 1.000		
	Prep for	PDR - CXI 1.0um Prec Ins	r Std	
	REDR - PI	elim Design Review - CXI	1.0um Prec Inst	
			1	
	▲ Final E	ngr Analysis - CXI 1.0um F	rec instr Std	
	 ↓ Final I	Design - CXI 1.0um Prec In	etr Std	
	<u>_</u> ++			
	<u>∆</u> _/Gen	erate Assy & Detail Dwgs-	CXI 1.0um Prec Instr	
	<u></u> Pi	ep for FDR - CXI 1.0um Pr	ec instr Std	
		R - Final Design Review -	CXI 1 0um Prec Instr	
	Z Prep for	Seismic Review - CXI 1.0	um Prec Instr	
	Selan	i nic Peer Review - CXI 1.0u	n Prec Instr Std	
	_+			
	Selan	hic Review Approval - CXI	1.0um Prec instr	
	00	OMP: Committee Approva	- CXI 1.0um Prec Instr	
		tears EDB Chapters	Aum Dros Instr Std	
		COLD LINK CUBURGE - CXI 1	Juum Prec Instr Std	
		Check & Approve Dwgs - C	XI 1.0um Prec Instr Std	
	-			

Month end March schedule: Precision Stand

Activity	Orig	Total	Early	Early	
Description	Dur	Float	Start	Finish	FY08 FY09 FY10 FY11 FY12
Generate Mfg Docs - CXI 1.0um Prec Instr Std	20	235	08/28/09	09/24/09	Generate Mfg Doce - CX0 1.0um Prec Instr Std
9110356 Procurement - CXI Precision Ins	trume	nt Star	nd		
Procurement Preps - CXI 1.0um Prec Instr Std	30	228	06/28/09	10/08/09	Procurement Preps - CX0 1.0um Prec Instr Std
AWARD: PO - All Parts CXI 1.0um Prec Instr Std	1	169	01/18/10	01/18/10	★ ₩AWARD: PO - All Parts CXI 1.0um Prec Instr Std
Vendor Effort - All Parts CXI 1.0um Prec Instr	85	169	01/19/10	05/17/10	Vendor Effort - All Parts CXI 1.0um Prec Instr
RCV: All Parts CXI 1.0um Prec Instr Std	0	169		05/17/10	RCV: All Parts CXI 1.0um Prec Instr Std
9110357 Fab & Assembly - CXI Precision	Instru	ment S	Stand		
Inspect Procured Parts - CXI 1.0um Prec Instr St	10	169	05/18/10	05/31/10	Hardson Procured Parts - CXI 1.0um Prec Instr St
Submit Shop Orders - CXI 1.0um Prec Instr Std	1	235	09/25/09	09/25/09	Submit Shop Orders - CXI 1.0um Prec Instr Std
Process MFD Input - CXI 1.0um Prec Instr Std	10	235	09/28/09	10/09/09	AFF Input - CX0 1.0um Prec Instr Std
Machining Processes - CXI 1.0um Prec Instr Std	70	235	10/12/09	02/02/10	Z
Welding - CXI 1.0um Prec Instr Std	15	235	02/03/10	02/23/10	L⊥ ▲ Weiding - CXI 1.0um Prec Instr Std
RCV: Fab Parts CXI 1.0um Prec Instr Std	0	235		02/23/10	RCV: Fab Parts CXI 1.0um Prec Instr Std
Inspect Fab Parts - CXI 1.0um Prec Instr Std	3	235	02/24/10	02/26/10	Tinspect Fab Parts - CXI 1.0um Prec Instr-Std
Assemble Parts - CXI 1.0um Prec Instr Std	10	169	06/01/10	06/14/10	Assemble Parts - CXI 1.0um Prec Instr Std
9110358 Testing - CXI Precision Instrument Stand					
Final Test - CXI 1.0um Prec Instr Std	5	169	06/15/10	06/21/10	Final Test - CX0 1.0um Prec Instr Std
AVAIL: CXI 1.0um Prec Inst Ready For Install	0	169		06/21/10	AVAIL: C30 1.0um Prec Inst Ready For Install

Backup Material: Schedule (5)

Month end March schedule: Detector Stage

Activity	Orig	Total	Early	Early	
Description	Dur	Float	Start	Finish	
1.3.05.01.03 CXI Detector Stag	е				
9110359 Design & Engr - CXI Detector Sta	age				
START: CXI Delector Stage	0		12/03/07A		START: CXI Detector Stage
Generate PRD - CXI Detector Stage	122		12/03/07A	06/23/08A	Generate PRD - C2 Detector Stage
COMP: PRD Released - CXI Delector Stage	0			06/23/08A	COMP: PRD Released - CXI Detector Stage
Generate ESD (0-60%) - CXI Detector Stage	132		04/01/08A	10/31/08A	Generate ESD (0-60%) - CXI Detector Stage
Generate ESD (61-100%)- CXI Detector Stage	25		02/02/09A	02/18/09A	Generate ESD (61-100%)- CX0 Detector Stage
COMP: ESD Released - CXI Detector Stage	0			02/18/09A	OMP: ESD Released - CXI Detector Stage
Apr08 through Sep08 Plan Adjustment	21		09/01/08A	09/30/08A	Apros through Sep08 Plan Adjustment
Prelim Design (0-60%) - CXI Detector Stage	120		04/01/08A	10/31/08A	Prelim Design (0-60%) - CXI Detector Stage
Prelim Design (61-100%) - CXI Detector Stage	30	61	03/18/09A	05/07/09	Prelim Design (61-100%) - CXI Detector Stage
Controis Interface & Integ - CXI Detector Stage	4	84	04/01/09	04/06/09	Controls Interface & Integ - CXI Detector Stage
Prelim Engr Analysis - CXI Detector Stage	12	76	04/01/09	04/16/09	Prelim Engr Analysis - CXI Detector Stage
Prep for PDR - CXI Detector Stage	5	61	05/08/09	05/14/09	Prep for PDR - CXI Detector Stage
PDR - Prelim Design Review - CXI Detector Stage	1	61	05/15/09	05/15/09	♥ ▼ PDR - Prelim Design Review - CXI Detector Stage
Final Engr Analysis - CXI Detector Stage	5	156	05/18/09	05/22/09	
Final Design - CXI Detector Stage	25	156	05/25/09	06/26/09	+ t ▲ Final Design - CXI Detector Stage
Generate Assy & Detail Dwgs - CXI Detector Stage	50	161	06/29/09	09/04/09	Generate Assy & Detail Dwgs - CXI Detector Stage
Prep for FDR - CXI Detector Stage	5	161	09/07/09	09/11/09	44 2027 Prep for FDR - CXI Detector Stage
FDR - Final Design Review - CXI Detector Stage	1	156	09/21/09	09/21/09	🖌 📈 FDR - Final Design Review - CXI Detector Stage
Incorp FDR Changes - CXI Detector Stage	5	156	09/22/09	09/28/09	₩ ZPIncorp FDR Changes - CXI Detector Stage
Prep for Selamic Review - CXI Detector Stage	10	156	06/15/09	06/26/09	₩ <u>A</u> 7Prep for Selamic Review - CXI Detector Stage
Seismic Peer Review - CXI Detector Stage	20	156	06/29/09	07/24/09	Selémic Peer Review - CXI Detector Stage
Seismic Review Approval - CXI Detector Stage	1	156	07/27/09	07/27/09	# ∑Selamic Review Approval - CXI Detector Stage
COMP: Committee Approval - CXI Detector Stage	0	156		09/07/09	COMP: Committee Approval - CXI Detector Stage
Check & Approve Dwgs - CXI Detector Stage	5	156	09/29/09	10/05/09	A Check & Approve Dwgs - CXI Detector Stage
Generate Mfg Docs - CXI Detector Stage	20	205	10/06/09	11/02/09	Generate Mfg Docs - CXI Detector Stage

Month end March schedule: Detector Stage

Activity	Orig	Total	Early	Early	
Description	Dur	Float	Start	Finish	FY08 FY09 FY10 FY11 FY12
9110360 Procurement - CXI Detector Star	1e				
Procurement Preps - Vdr Parts CXI Detector Stage	30	156	10/06/09	11/16/09	
AWARD: PO - All Vdr Parts CXI Detector Stage	1	124	01/18/10	01/18/10	AWARD: PO - All Vdr Parts CXI Detector Stage
Vendor Fab - All Vdr Parts CXI Detector Stage	120	124	01/19/10	07/05/10	Vendor Fab - All Vdr Parts CXI Detector Stage
RCV: All Vendor Parts CXI Detector Stage	0	124		07/05/10	RCV: All Vendor Parts CXI Detector Stage
9110361 Fab & Assembly - CXI Detector Stage					
Inspect Procured Parts-All CXI Detector Stage	2	124	07/06/10	07/07/10	📩 Minapect Procured Parts-All CXI/Detector Stage
Submit Shop Orders - CXI Detector Stage	1	205	11/03/09	11/03/09	
Process MFD Input - CXI Detector Stage	10	205	11/04/09	11/17/09	44 ⊿7 Process MFD Input - CXI Detector Stage
Machining Processes - CXI Detector Stage	50	205	11/18/09	02/11/10	Machining Processes - CXI Detector Stage
Welding - CXI Defector Stage	8	205	02/12/10	02/23/10	₩ Δ/Weiding - CXI Detector Stage
Vacuum Leak Check - CXI Delector Stage	8	205	02/24/10	03/05/10	₩ ▲ Vacuum Leak Check - CXI Detector Stage
Inspect Fab Parts - CXI Detector Stage	7	205	03/08/10	03/16/10	u ∭Inspect Fab Parts - CXI Detector Stage
RCV: Fab Parts CXI Detector Stage	0	205		03/16/10	RCV: Fab Parts CXI Detector Stage
Clean - CXI Detector Stage	10	124	07/08/10	07/21/10	Clean - CX0 Detector Stage
RCV: Cornell Detector from LCLS	0	435		04/24/09*	CV: Cornell Delector from LCLS
Assemble Parts - CXI Detector Stage	15	124	07/22/10	08/11/10	Assemble Parts - CXI Detector Stage
REQD: Stage Controls HW & SW	0	201		04/26/10	REQD: Stage Controls HW & SW
Connect Controls - CXI Detector Stage	3	124	08/12/10	08/16/10	TConnect Controls - CXI Detector Stage
Vacuum Process - CXI Detector Stage	1	124	08/17/10	08/17/10	Vacuum Process - CXI Detector Stage
Pre-Survey - CXI Detector Stage	1	124	08/18/10	08/18/10	[↓] [↓] [↓] [↓] [↓] [↓] [↓] [↓] [↓] [↓] [↓]
9110362 Testing - CXI Detector Stage					
Final Test - CXI Detector Stage	3	124	08/19/10	08/23/10	Final Test - CXI Detector Stage
AVAIL: Ready For Installation CXI Detector Stage	0	124		08/23/10	AVAIL: Ready For Installation CXI Detector Stage