

Photon Systems Controls and Data-Acquisition

Gunther Haller

Particle Physics and Astrophysics Division Photon Control and Data Systems (PCDS) Group

12 November, 2008

12 November 08, FAC Meeting Photon Systems Controls & DAQ

v2

1

Gunther Haller haller@slac.stanford.edu

Outline

- LCLS versus LUSI Responsibilities
- PPS/HPS
- XTOD Diagnostics
- AMO Instrument Controls
- LUSI Instruments and Diagnostics
- Installation
- Machine Protection System
- Laser Safety System
- EPICS Software
- Network Security
- Data Acquisition
- 2-D Detector Control and Readout
- Femto-Second Laser Timing System

LCLS & LUSI

- Common photon-area Controls and DAQ System Design for LCLS and LUSI
 - Includes Front-End Enclosure (FEE), Near Experimental Hall (NEH), X-Ray Tunnel (XRT) and Far Experimental Hall (FEH)
 - Most of XTOD in FEE

LCLS Controls & DAQ W.B.S 1.6.2

- AMO experiment (NEH, hutch 1)
 - All controls and DAQ
- Common services for all hutches
 - Examples
 - PPS/HPS/LSS
 - 120 Hz beam-quality data interface
 - Machine protection system interface
 - Network interface
 - Local science data online processing & cache
- 2-D detector
 - Control and DAQ for detector
- LUSI Control & DAQ W.B.S
 - XPP, XCS, CXI Instruments, Diagnostics
- Examples of documents released
 - 1.1.523 XES-LUSI ICD (includes Controls and Data systems)
 - 1.1-516 XES Photon Controls to Electron Beam Controls System ICD
 - 1.1.517 XES Photon Controls to Electron Beam Controls MPS ICD

- Hardware in house
- FEE/NEH software being written
- Installation early CY09

12 November 08, FAC Meeting Photon Systems Controls & DAQ 5

XR Diagnostics in Front End Enclosure

XTOD Instrument Racks under test in LLNL lab

- Installation Readiness Review held 11-7-08
- First racks will be moved from LLNL to SLAC Jan 5, 09

7

12 November 08, FAC Meeting Photon Systems Controls & DAQ Gunther Haller haller@slac.stanford.edu

Photon Area Controls and Data Systems Devices

- Created web-pages to list supported controls and data-acquisition devices for photon area
 - For all experiments in xray area (AMO, XPP, XCS, SXR, CXI, etc)
 - SXR might have up to 8 different end-stations
 - <u>http://confluence.slac.stanford.edu/pages/viewpage.actio</u> <u>n?pageId=9175609</u>
 - Additional devices can be added after discussions with Photon Controls and Data Systems (PCDS, G. Haller) group

AMO Instrument Control

- Requirements listed in Engineering Specification Documents (ESD's)
 - 1.6-108 AMO Controls ESD, status: released
 - 1.6-109 AMO DAQ ESD, status: released
- Interfaces specified in Interface Control Document (ICD)
 - 1.1-515 XES AMO Controls ICD, status: released
- Held Final Design Review 11-10-08
 - http://confluence.slac.stanford.edu/display/PCDS/AMO-FDR
 - Including identification of each component to be controlled and data to be acquired
 - ~10 cameras
 - ~50 stepper motors, almost all smart motors (serial port)
 - ~ 50 channels of high-voltage bias supplies
 - ~ 8 sets of vacuum gauges, 2 valves
 - misc other controllers, but mostly straight forward serial devices
 - All controllers identified, example power supplies -> next slide
 - Submitted requisitions for most controllers to purchasing
 - Start of integration, not before summer 09 per schedule

AMO Instrument Power Supplies

12 November 08, FAC Meeting Photon Systems Controls & DAQ Gunther Haller haller@slac.stanford.edu

10

LUSI & SXR

LUSI includes the instruments

- XPP (NEH, hutch 3)
- XCS (FEH, hutch 4)
- CXI (FEH, hutch 5)
- Have written and released ESD's and ICD's for each instrument
- Controls and DAQ devices from PCDS list with some additions
- Will purchase components according to schedule (not before mid 09)
- SXR
 - Have device list for beamline
 - Held discussions with several end-stations on how to plan to make them compatible with LCLS
 - As soon as SXR beamline has been added to scope of LCLS, ready to purchase components.

Photon Systems Controls & DAQ

haller@slac.stanford.edu

Installation

- Held Installation Readiness Review 11-7-08
- Already installed
 - Fibers from SCCS (Computer Center) and MCC (Main Control Center) to NEH
 - Fibers from server room to each hutch, to laser room, to FEE, and to MPS & PPS racks
 - LSS (Laser Safety Systems) cables
 - MPS cables from each hutch and FEE to MPS rack in hall
 - Some PPS cables
 - XTOD cables for upstream 2/3 of FEE
- To be installed February 09
 - Balance of PPS/HPS cables
 - XTOD cables for downstream 1/3 of FEE
- Already installed
 - NEH hall MPS racks
 - Server room racks with main network switch, fiber optics distribution
 - Hutch 1 XTOD rack
 - Laser Room Laser Safety rack

Mix of fiber optic, Category 6, coaxial, and industrial controls cabling.

All cables routed through trays will be Low-Smoke, Zero Halogen.

Industrial controls cabling will follow the XES Machine Protection System's model for trunk layout, termination, and cross-connect.

12 November 08, FAC Meeting Photon Systems Controls & DAQ Gunther Haller haller@slac.stanford.edu

15

(To Main Control Center) Dedicated Optical fiber 1 single-mode pair per Link Node for custom MPS signaling protocol Ethernet Switch Dedicated Single Mode Optical Fiber Pai Terminal Server Redundant single-mode pairs for 1000Base-LX Ethernet cated Single-Mode Optical Fiber Access to EPICS process variables on MPS Link Nodes via local Ethernet switch MPS MPS Link Node console logins via Link Node **Terminal Server** Cat-6 Ethern Remote power-cycling of Link Nodes via APC AP7900 Switched Rack PDU -RS-232 MPS Link Node RS 232 Network-Controlled Power Distribution Unit **(I)** (\mathbf{I}) **(III) (P**) Stanford 16 **Gunther Haller** 12 November 08, FAC Meeting Linear Accelerator

MPS Rack Layout

- **TCP/IP** Networking

All optical networking paths route through experiment hall patch panels and terminate at fiber patch panel in MCC

Photon Systems Controls & DAQ

haller@slac.stanford.edu

Installation Status

- Near Experiment Hall Machine Protection Rack, (B950S-04), Installed.
- 48-strand fiber trunk pulled between B950B-42, (NEH Server Room), and B950S-04. The NEH MPS optical networking path is now complete.
- Ethernet Switch Installed in rack B950S-04, connected to fiber, and provided with temporary power.

12 November 08, FAC Meeting Photon Systems Controls & DAQ 17

MPS Installation Status

18

- All DIN rails for rack B950S-04 assembled, tested, and installed
 - 12 MPS Link Node Input Aggregation Rails
 - 6 MPS Trunk Head-End Rails

 MPS Trunk Field Rails assembled
MPS trunk cables are being pulled between the hutches, the FEE, and rack B950S-04 as we speak.

12 November 08, FAC Meeting Photon Systems Controls & DAQ

12 November 08, FAC Meeting Photon Systems Controls & DAQ 19

Gunther Haller haller@slac.stanford.edu

Server Room Racks

20

12 November 08, FAC Meeting Photon Systems Controls & DAQ Gunther Haller haller@slac.stanford.edu

NEH Laser Bay Laser Safety System Layout and Components

21

12 November 08, FAC Meeting Photon Systems Controls & DAQ

haller@slac.stanford.edu

NEH Laser Bay

22

12 November 08, FAC Meeting Photon Systems Controls & DAQ Gunther Haller haller@slac.stanford.edu

NEH Hutch 1

Exterior View

LED Hazard Sign

Interior View

12 November 08, FAC Meeting Photon Systems Controls & DAQ 23

Gunther Haller haller@slac.stanford.edu

AMO Installation

- Vacuum test setup running in PCDS lab (Central lab annex)
- AMO racks ready to be loaded (Central lab annex)

Software: AMO Example: Moving Tables

AMO contains 3 moving tables: Focusing Optics, High Field Physics Chamber and Diagnostics Chamber. It is expected that those tables will be very similar.

25

The driver will:

- Control movements in X, Y, Z, Pitch, Yaw and Roll
- Keep track of position at all time
- Ensure there are no damages to the bellows
- Adjust a downstream table position if needed

Operator's view:

- For each table, + and buttons in up to 6 directions
- Display position of table
- If a sensor triggers, no movement will be allowed in the direction that caused the sensor to trigger but operator is responsible for resolving the issue

Challenges:

- Tracking position across IOC reboot
- Prevent damages when laser system is hooked-up
- Moving from position with KB mirrors to position without (large movement)

12 November 08, FAC Meeting Photon Systems Controls & DAQ

Devices controlled by this driver:

- MDI3CRL23A7: motor
- MDI3CRL23B7: motor
- Applied Geomechanics 900: inclinometer
- Balmer IFRM 05N15A3_S05L: bellow sensor
- RGH24: encoder with home position
- LIK21: encoder with home position

Stanford

Linear Accelerato Center

Consoles: PyQt versus EDM

26

Traditionally, EPICS systems use EDM

- X Motif based GUI
- X Objects put together to create a console
- X User cannot personalize GUI
- * Additional processing requires the use of external tools such as LabView and MatLab
- × Not well maintained any more

AMO will use PyQt framework instead

- * Based on Python and Qt: open source, widely used and active projects
- * Python provides scripting capabilities and an easy way for the user to personalize GUI
- × Qt provides modern GUI and widget concept

12 November 08, FAC Meeting Photon Systems Controls & DAQ

Status

 EPICS drivers for most devices are written
Remaining drivers and consoles will take another ~ 6 months at 2 FTE effort.

Is according to schedule

Network Security Enclave PCDS (Photon Control and Data Systems)

- Created PCDS Network Security Plan, approved by SLAC network security and DOE
 - http://confluence.slac.stanford.edu/display/PCDS/Networking
 - Can't bring "ad-hoc" instrumentation/computers with data analysis software and hook up. Need to plan ahead.
 - Completely fine for planned LCLS operation

12 November 08, FAC Meeting Photon Systems Controls & DAQ 29

AMO DAQ Instruments

High Field Physics End-Station

- electron time-of-flight spectrometers
- ion spectrometers
 - time-of-flight, imaging, momentum
- x-ray emission spectrometers

magnetic bottle electron time-offlight spectrometer

- x-ray emission spectrometers
- pulse energy monitor
- beam profile screens

AMO DAQ Overview						
Detector	Readout Interface	Number of Devices	Number of Channels	Sample Time [ns]	Integration Time [us]	Data Rate [MB/s]
E-TOF	Acqiris	5	5	0.1-0.5	1-5	12
lon-TOF	Acqiris	1	1	0.5-5	10-100	4.8
Ion Imaging Spectrometer	Opal1000	1	1	N/A	N/A	18 (after zero suppression)
Ion Momentum Spectrometer	Acqiris	2	7	0.5	10	34
Magnetic Bottle e-TOF	Acqiris	1	1	0.1	2	4.8
X-Ray Emission Spectrometer	Opal1000	2	2	N/A	N/A	50
Pulse Energy Monitor	Acqiris	1	2	0.5	0.5	0.48
Beam Position Monitor	Opal1000	2	2	N/A	N/A	Small (after calculation)

Babar archived ~30MB/s. Should reduce data sizes with liwale

12 November 08, FAC Meeting Photon Systems Controls & DAQ

31

Gunther Haller

haller@slac.stanford.edu

Data System Overview

- Large data volumes compared to synchrotron light sources
- Common DAQ back-end architecture for all LCLS experiments

AMO DAQ:

- Linux (open source, supported by hardware vendors)
- cPCI (driven by Acqiris)
- Must be able to associate data from different sources 120Hz AMO DAQ Data
 - 120Hz Ream Line Data ("BL
 - 120Hz Beam Line Data ("BLD")
 - Non-120Hz AMO Controls Data

Data System Architecture

Photon Systems Controls & DAQ

haller@slac.stanford.edu

Configuration & Calibration

- Instrument configuration saved together with science data
- Two e-TOF calibrations:
 - Take Acqiris spectra at different retarding potentials
 - Calibrate Pulse Height vs. Number of Electrons
- One Pulse Energy Monitor calibration:
 - Fire laser and measure Acqiris response
- Same software used to create the configuration profiles for data taking is able to create the configuration settings used for calibration
 - data taking: configuration remains constant during a run
 - calibration: detector configuration changes often in between cycles
- Outputs from calibration runs can be used for on-line processing of the data (e.g. gain corrections, thresholds)

Acquisition & Processing

- Each event labelled with a pulse ID for associating DAQ data with Controls/BLD
 - Controls data stream separate. Association done with Offline tools
 - BLD embedded in DAQ data stream
- Processing envisioned during data acquisition to reduce data volume:
 - Bad pulse rejection
 - Zero-suppression for Acqiris readout (peak calculation eventually?)
 - Zero-suppression for Ion Imaging Spectrometer (~5% occupancy)
 - XES: Region-of-interest and projection onto one axis
 - Centroid/Width/Tilt calculation for beam-position monitors

Ability to send raw data on selected events (e.g. for monitoring)

12 November 08, FAC Meeting Photon Systems Controls & DAQ 35

Monitoring & Storage

Data is multicast to both DAQ CPUs and monitoring CPUs.

Individual or summed spectra displayed in real-time

- User selectable refresh rate of up to 10 Hz
- Time-frame of the display user selectable
 - i.e. last n shots, cumulative data set, etc.
- Possible to zoom on the display
 - options for auto-scaling or user defined ranges
- Storage and printing capabilities included for the displayed data
- All data converted from hardware format to physical units before display

Data stored to data cache in custom object-oriented format ("XTC")

Digitizer

Acqiris DC282 high-speed 10-bit cPCI Digitizer

- 4 channels
- 2-8 GS/s sampling rate
- Acquisition memory from 1024 kpoints to 1024 Mpoints (optional)
- Low dead time (350 ns) sequential recording with time stamps
- 6U PXI/CompactPCI standard, 64 bit, 66 MHz PCI bus
 - Sustained transfer rate up to 400MB/s to host SBC

Status

Re-used significant fraction of Babar DAQ software

Implemented "zero-copy" transmission/reception of network data (hard in Linux)

Running full DAQ Chain (EVG/EVR/L0/L1/L2/L3): Configuring/Reading out Acqiris/Opal1000 with "zerocopy" of objects in memory (better performance)

Generating official data files. Iterating over them.

Online and Offline

Online data-acquisition and offline data management and data analysis Covered in separate presentation

LUSI Data Acquisition

Cornell and Brookhaven 2-D pixel detectors are configured & read out using the SLAC ATCA Reconfigurable Cluster Element modules.

Gunther Haller haller@slac.stanford.edu

2D-Detector Control and DAQ Chain

CXI 2D Detector

- 2D pixel array detector for CXI instrument
 - Collaboration with Sol Gruner Group at Cornell Univ.
 - Full-scale custom ASIC received, measurements in progress at Cornell & SLAC
 - Integration with SLAC DAQ system done at SLAC
 - Mechanical packaging done at SLAC
 - Coordinated with CXI

2D-Detector Mechanical/Electrical Vacuum Assembly Conceptual Design (SLAC PPA Engineering)

Quadrant Board and Electrical Interfaces

ASIC Board

- Rigid-flex ASIC board (SLAC design)
- ASIC to be loaded this month
- Analog quadrant PCB in layout

Femto-Second Laser Timing System

- Provided by LBL
- Tested performance of prototype at SLAC, better than 20 fsec drift performance (100 fsec is spec)
- Pulled fibers from Sector 20 to NEH
- Prototype will come to SLAC in Spring for initial commissioning
 - "Production" unit in late summer 09

Summary

XTOD

- Instrumentation to be delivered in January well under way, installed in racks, in testing. Delivery driven by getting AC installed into FEE
- PPS, HPS, MPS, and LSS are all well on their way, most will be installed in Spring 09
- AMO Instrument Controls and Data Acquisition
 - Final Design Review held
 - Devices are being ordered
 - Test setups and software in progress
 - Installation
 - Well under way
 - Most long-haul cables already installed
 - Many racks already installed

47

Summary con't

- Data Acquisition Challenging
 - Much more data than past xray experiments
 - However we reuse many parts of DAQ developed for BaBar at SLAC
 - See no issue acquiring data when instruments are ready
- Network Security plan approved by SLAC and DOE

Offline infrastructure in design

- Issue is scientific computing (not in scope of project)
 - Needs to be addressed asap

48

