

Low-Charge Operating Point

FAC Meeting Nov 12, 2008

Nov 11, 2008 Low-Charge Operating Point

Motivations for Low Charge Operation

- Peak current limited by CSR breakup to ~3KA
- At 20pC should be able to get ~ 1 micron RMS bunch.
- Emittance expected to improve with lower charge
- Smaller cathode spot \rightarrow lower thermal emittance
- Reduced wakefields in LINAC
- Short pulses very interesting for users.

Gun Simulation and Experiment

Experiment: Slice emittance @ OTR2: 19 pC, 0.6mm iris. ~0.15 microns!

Simulation at beginning of undulator

Simulation (Elegant) for over-compression to 1.4 micron RMS bunch length.

CSR increases emittance, but only to ~0.7 micron maximum

Josef Frisch frisch@slac.stanford.edu

Measured Emittance as a Function of Compression

Measured emittance < 0.5 microns at maximum compression

Emittance X Bmag < 1.5 microns at full compression X emittance measured at 20pc as a function of compression at 12 GeV

No Quantitative Bunch Length Diagnostic

Pulses too short for Sband TCAV

Resolution limited to ~10 micron RMS

Use visible light detector looking at OTR screen to find approximate maximum compression phase

Nov 11, 2008 Low-Charge Operating Point

What do we need to operate in ultra-short bunch mode?

Diagnostics

- BPMs
- Profile Monitors
- Bunch Length Monitors
- Controls
 - May need improved LLRF
 MPS probably not an issue
- Accelerator hardware: NONE!

Beam Position Monitors Old SLC BPMs will not read 20pC pulses Designed for ~5nC.

New LCLS EPICS BPMS work (Only \$\$\$)

Low-Charge Operating Point

frisch@slac.stanford.edu

Profile Monitors

Bunch Length Monitor

Existing transverse cavity cannot measure 1 micron bunch (limit ~10 micron)

X-band TCAV should do better

Expect 2.5 micron

Possibility of ~ 1 micron with pulse compression system

Complex, long lead time – but excellent measurement

In short term need spectral measurements

DESY Multi-grating Spectrometer

Multiple gratings for broad wavelength range Need X10 range to reconstruct pulse (.5 to 5 microns) 4-grating system should work

Spectrometer Installation

- Spectrometer DAQ fairly complex 120 independent ADC channels
- Spectrometer must operate in vacuum or dry gas
- Remote control of alignment is difficult
- Install spectrometer in klystron gallery
- UHV transport line in Sector 25 (after BC2)

Space downstairs, upstairs, and penetration available.

Transport Line Installation Location

Install after BC2, upstream of structure 25-4.

Low-Charge Operating Point

Nov 11, 2008 Low-Charge Operating Point

aboratory

Select either 1cm diameter aperture or OTR foil

UHV transport

Nov 11, 2008 Low-Charge Operating Point

Transport Line to Surface No window in tunnel Diamond window upstairs Option for UHV connection to upstairs experiment Visible to near IR for ultra-short bunch length measurement 10 micron to 2 millimeter transmission for mm-wave / **FIR** tests

Very bright FIR source

Ultra-short Bunch Operation Status

- Believe we have low emittance, high peak current 1 micron RMS bunches
- Need diagnostics to operate accelerator in this mode
 - New BPMs, Spectrometer bunch length measurement.
- Transport line for spectrometer also useful for mm-wave / FIR experiments

"Only" Money and Manpower