Stanford Lincar Accederator Como

Lawrence Livermore National Laboratory

Hard and Soft X-ray Mirror System Design Status

mccarville1@llnl.gov

June 17, 2008

Stanford Linour Accelerator Contor

Lawrence Livermore National Laboratory

Mirror system testing & final design drawings are nearly complete

XTOD Mirror System	2007	2008	2009	
	Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov D	ec Jan Feb Mar Apr May Jun Jul	
Mirror assembly design		FDR		
Soft X-ray mrror proc. & coating	CDK			
Hard X-ray mirror proc. & coating				
Opto-mechanical prototype tests				
Long lead procurements				
Fabrication			n 1	
Assembly				
Installation			ľ.	

Prototype tests focused on two high technical risk areas:

- Measuring & maintaining HOMS tangential figure
- Measuring & maintaining HOMS pointing stability
- Requirements have been demonstrated for both these areas

HOMS and SOMS share a common design approach: HOMS requires a few additional features

FAC meeting June 17, 2008

Tom McCarville mccarville1@llnl.gov

Stanford Enour Accelerator Contor

Eawrence Livermore National Laboratory Figure errors predicted by analysis have been verified in prototype tests

• Figure budget limits "power" imparted upon reflection

Mirror Flatness Requirement		Figure error budget, nm					
	''Best Fit''	Peak to					
Axis	Radius, km	Valley, nm	Mounting	Thermal	Coating	Gravity	Fabrication
HOMS/SOMS							
Sagittal	>~3	< 5	<<1	<<1	<<1	<<1	<1
SOMS							
Tangential	>188	<20	<1	<1.5	<4	<-1	< 10
HOMS							
Tangential	>2600	<9	<1.5	<1.5	<12	<-1	<20

Finite element analysis guided design optimization

Tom McCarville <u>mccarville1@</u>llnl.gov

Lawrence Livermore National Laboratory

SOMS mirror #1 tangential (horizontal) figure has been measured (transmission flat correction not yet applied)

Stanford Linear Accelerator Contor

Effect of ground motion amplification on pointing stability has been addressed

- Pointing jitter was noticed on our first HOMS prototype
- Motion amplification was measured with accelerometers
 - rms amplification relates to mean square acceleration S(f) by:

$$\langle x_{top} \rangle_{rms} / \langle x_{ground} \rangle_{rms} = \sqrt{S_{top}(f) / S_{ground}(f)}$$

≈ 150 at 20 Hz

The final design corrects this problem

Tom McCarville mccarville1@llnl.gov

Stanford Linear Accelerator Cortor

Lawrence Livermore National Laboratory

The final design fundamental frequency is over 80 Hz

Modes calculated by a finite element model

PDR design					
Mode	Hz	%Mass participation			
		Х	Y	Z	
1	27	66	0	0	
2	32	0	0	74	
3	80	3	3	0	
4	97	1	53	0	
5	100	12	2	0	

FDR design

Mode	Hz	% Mass Participation			
Mode		Х	Y	Z	
1	83	2	0	63	
2	83	64	0	2	
3	190	1	37	0	
4	249	0	0	6	
5	313	5	8	0	

Amplitude "scaling" for mode f_n

Tom McCarville mccarville1@llnl.gov

Stanford Linear Accelerator Contor

Temperature induced pointing error has been measured and controlled

(1) Beam pointing drift < 10% of diameter required during experiments:

- $d\theta$ = 90 nrad for HOMS
- $d\theta$ = 900 nrad for SOMS

(2) Temperature dependence of mirror pointing has been measured: (next page)

- $d\theta/dT \cong 300 \text{ nrad}/0.1 \text{ }^\circ\text{C}$

... Temperature stability < 0.03 C required for HOMS

- (3) The challenge: to demonstrate closed loop stability < 0.03 C/week
 - 0.01 C demonstrated in an insulated enclosure around our prototype

Tom McCarville mccarville1@llnl.gov

Stanford Lincar Accederates Contor

Lawrence Livermore National Laboratory

Pointing error $\Delta \theta / \Delta T$ was measured with our prototype

FAC meeting June 17, 2008

Tom McCarville mccarville1@llnl.gov

Stanford Linour Accelerator Corner

Lawrence Livermore National Laboratory

Pointing stability has been demonstrated in a thermal enclosure

• Heat balance: $q_{fan}(t) = q_{wall} + q_{floor} \approx c_{wall} [T_{in}(t) - T_{out}(t)] + c_{floor} [T_{in}(t-1 hr) - T_{floor}(t)]$ $dq_{fan}(t) \approx -c_{wall} dT_{out}(t)$

June 17, 2008

mccarville1@llnl.gov

Stational Lower Accelerator Conter

Lawrence Livermore National Laboratory

Tasks remaining this FY:

- Complete ESD, fabrication drawings, & final review August
 calculate survey installation coordinates
- Measure & coat SOMS mirrors in August
- Bid and award fabrication drawings Sept.
 - (1) chamber
 - (2) pedestal & slide plate assembly
 - (3) mirror mount & chin guard assembly
 - (4) cam assembly

