

Stanford Linear Accelerator Center

Lawrence Livermore National Laboratory

XTOD Update

Facility Advisory Committee Photon Breakout Session October 30, 2007

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

XTOD Commissioning Diagnostics and Offset Mirrors in the Front End Enclosure (FEE) ore National Laboratory

X-TOD Update

bionta1@llnl.gov

Lawrence Livermore National Laboratory

FEE Diagnostic Hardware

- Fixed Mask / Slit On order
- Attenuator On order
- Gas Detector On order (see prototype results)
- K Measurement / Soft X-Ray imager
 Need to redo SCR
- Thermal Sensor in final design
- Direct imager in final design
- Controls Mostly procured

Primary photoelectrons cause N₂ molecules to fluoresce in the near UV

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

Gas Detector Prototype under test at SSRL

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

Prototype Gas Detector insert for measuring x ray induced photoemission of candidate wall materials nore National Laboratory

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXX

Gas Detector signal vs. magnetic field at various pressures

Simulated

Measured

Simulation and measurement, when expressed in units of number of UV photons at detector, agree to within a factor of 2

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

UV signal closely represented by 9:00, B on (red): Al is the best

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXXX

Time dependence of gas detector signal from the 8keV fundamental

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

Indirect imager finds spontaneous core

Channel-cut Si Monochrometer will be used to measure relative K of two undulator segments

X-TOD Update

Two undulator spontaneous spectrum. Falloff of high energy tail is independent of aperture

Two undulator spontaneous high energy falloff has highest slope when $\Delta K/K=0$.

UCRL-PRES-xxxxxxx

Total Energy (Thermal) Sensor provides calibrated measurement of FEL pulse energy

Measures FEL energy deposition through temperature rise

Linac Coherent Light Source Thermal sensor plagued by "prompt" pu La prence Liver Dire National Linear Acceleration

that is difficult to suppress

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxx

Backup thermal sensor: Slow down response, average pulses

Slow sensor: Response is thermal, and linear with E

Lawrence Livermore National Laboratory

Response changes with TCR

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxx

The Options: Same sensor technology, different speeds

X-TOD Update

bionta1@llnl.gov

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxx

Soft X-Ray spontaneous, all undulator segments, thick

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXXX

Soft X-Ray Spontaneous all undulator accord

segments, thin scintillator National Laboratory

Absorbed in 5 um YAG,

Maximum ~ 20,000 photoelectrons/pixel

Camera: Photometrics 512B

Objective: Navitar Platinum 50 Power: 0.1365 NA: 0.060

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXX

Soft X-Ray FEL signal, thin scintillator

Lawrence Livermore National Laboratory

Absorbed in 5 um YAG, Maximum ~ 3.7e+8 photoelectrons/pixel

Camera: Photometrics 512B

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXX

Soft x-ray spontaneous, first undulator segment, thick

Lawrence Livermore National Laboratory

Absorbed in 1 mm YAG, Maximum ~ 1,800 photoelectrons/pixel Full Well: 200.000 Camera: Photometrics 512B **Objective:** Navitar Platinum 50 Power: 0.1365 0.060 NA:

October 30, 2007 X-TOD Update

Richard M. Bionta bionta1@llnl.gov

UCRL-PRES-xxxxxx

Scintillator signals in FEL equivalents

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxx

Direct Imager SSRL Run to measure YAG::Ce

yield, Nov. 6-8, 2007 Ce Livermore National Laboratory

Linac Coherent Light Source

Stanford Linear Accelerator Center

FEE Racks are being loaded and wired

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXX

Offset Mirror System

Collimators – in final design

SOMS – Mirrors purchased June 1st Mount will follow HOMS design

- HOMS
 - Mirrors in final design
 - Plan to purchase by December 30
 - Mount in preliminary design
 - Problems with 50 nRad stability requirement
- Pop-in Alignment Cameras
 - Procurement delayed until FY09
 - FOV's and positions established
 - Pulnix 4200 camera under test at LLNL
 - Conceptual hardware design in progress

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

FEL Offset Mirror Systems at Accelerator Center

Lawrence Livermore National Laboratory

SOMS and HOMS reflect horizontally

X-TOD Update

UCRL-PRES-XXXXXX

bionta1@llnl.gov

FEL Offset Mirror Systems and "Pop-in" Lawrence Livermore National Laboratory imagers for alignment

Differences between FEL offset mirrors and synchrotron mirrors

- Multi KW power loading seen at synchrotrons not an issue at LCLS
 - Instead we worry about single shot damage from FEL
- Active bending of Mirrors
 - Used at synchrotrons to make 100m radii for focusing
 - Needed at LCLS (HOMS) to maintain > 1 Mm radii so as to not change FEL divergence

Pointing stability

Stringent requirements for HOMS for a steady beam in the FEH

October 30, 2007 X-TOD Update

UCRL-PRES-xxxxxxx

X-TOD Update

bionta1@llnl.gov

Linac Coherent Light Source

Stanford Linear Accelerator Center

HOMS mirrors will be coated with SiCratory

Pop-in alignment cameras

LCLS XTOD DIAGNOSTICS POP-IN CAMERA CONCEPTUAL LAYOUT VERSION 01 DRAWN BY: PATRICK DUFFY DATE: 9-14-07

X-TOD Update

UCRL-PRES-xxxxxx

bionta1@llnl.gov

We are studying expected signal levels in the Pop-in cameras

2 keV fundamental

Lawrence Livermore National Laboratory

Pop-in 1 (After SOMS Mirror 1)

Pop-in 2 (After SOMS Mirror 2) Lawrence Livermore National Laboratory

Linac Coherent Light Source

Stanford Linear Accelerator Center

XTOD elements in Near Li Hall ational Laboratory

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXXX

XTOD Tunnel Design Complete lerator Center

October 30, 2007 X-TOD Update

UCRL-PRES-XXXXXX

Richard M. Bionta bionta1@llnl.gov

Integrated EPICS control system for XTOD has been designed

X-TOD Update

UCRL-PRES-XXXXXX

Linac Col Surger Light Source

awrence Livermore National Laboratory.

- Progress continues on XTOD :
 - Procurement Slit, Fixed Mask, Attenuator, Gas Detector
 - In final design– Direct Imager, Thermal Detector, collimators, HOMS mirrors
 - In preliminary design Mirror mechanical,
 - In conceptual design K Spectrometer, Soft x-ray imager, Pop-in Alignment system

Problem areas

- Thermal sensor signal degraded by non-thermal prompt signal
- Soft x-ray imager and K spectrometer design lagging
 HOMS pointing stability challenging
- FEE diagnostic instrumentation will be ready for instillation in 2008

UCRL-PRES-xxxxxxx

