Element-Specific and Real-Time Observation of CO-Ru Chemisorption Bond Breaking with Soft X-ray Spectroscopy

The adsorption and desorption of a molecule to a surface is one of the most fundamental chemical processes in interfacial chemistry. It has been proposed that adsorption and desorption proceed through a “precursor” state (1,2), in which a molecule is weakly bound to the surface. This is considered a transient state, in which the rotational and translational energy of the molecule is transferred from the surface before forming and to the surface after breaking a chemisorption bond. Though a large number of spectroscopic studies have been devoted especially to CO adsorption/desorption on metal surfaces, this “precursor” state has never before been evidenced.

X-ray laser probes the electronic structure changes of CO molecules in desorption from Ru(0001) using X-ray emission spectroscopy and x-ray absorption spectroscopy. Upon exciting the substrate by using a femtosecond 400 nm laser pulse, molecules were pumped from the chemisorbed state to the precursor state. The molecules in the precursor state either desorb or return to the chemisorbed state.

The occupied and unoccupied valence electronic structure of adsorbed CO molecules on surfaces can be followed in an atom-specific way using x-ray emission spectroscopy and X-ray absorption spectroscopy, respectively (3). At SSRL, scientists have developed a next-generation experimental setup for these studies. It is equipped with a high-throughput compact grazing incidence grating spectrometer developed by Dennis Nordlund, Hirohito Ogasawara and Anders Nilsson. The commissioning of setup and preparatory static measurements of the CO-Ru chemisorption bond for this study were performed at SSRL Beam Line 13-2 (4).

In this study, the setup was brought to the Linac Coherent Light Source to probe the short lived “precursor” state by the SSRL scientists, in collaboration with researchers from Stanford University; University of Hamburg, Center for Free-Electron Laser Science, Helmholtz-Zentrum Berlin for Materials and Energy, University of Potsdam and Fritz-Haber.
Institute of the Max Planck Society in Germany; Stockholm University in Sweden; and the Technical University of Denmark. They followed the electronic structure of CO molecules as their chemisorption state on Ru(0001) changed upon exciting the substrate with a femtosecond optical laser pulse. They observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate, but without significant desorption. A large fraction of the molecules (30%) were trapped in a transient precursor state that preceded desorption. The team calculated the free energy of the molecules as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells—chemisorbed and precursor state separated by an entropy barrier—explain the anomalously high prefactors often observed in desorption of molecules from metals.

References

Primary Citation

Contacts
Hirohito Ogasawara, SLAC National Accelerator Laboratory
Dennis Nordlund, SLAC National Accelerator Laboratory
Anders Nilsson, SLAC National Accelerator Laboratory and SUNCAT

SSRL is primarily supported by the DOE Offices of Basic Energy Sciences and Biological and Environmental Research, with additional support from the National Institutes of Health, National Institute of General Medical Sciences.