Cathode Enables Quasi-Two-Stage Intercalation for Multivalent Zinc Batteries

Widespread applications for electrochemical energy storage based on lithium-ion batteries now demand higher performance in terms of energy and power density, coupled with robust cycle life. Despite major advancements in lithium-ion batteries, a shortage of precious metals, such as cobalt, which is typically used in the cathode in lithium-ion batteries and is sourced from only a few countries globally, is predicted. This shortage has driven the energy storage community to develop “beyond lithium-ion” technology, based on earth-abundant metals, such as monovalent sodium and potassium or divalent calcium, magnesium, and zinc. Divalent metals, if used directly as a metal anode, can provide high capacity density compared to lithium because each ion carries twice the charge. They are also relatively cost-effective. However, challenges remain in identifying a cathode material capable of high capacity, stable cycling, and balancing the capacity of multivalent metal anodes. Moreover, a critical challenge in developing cathode materials for multivalent charge storage lies in addressing sufficient multivalent cation mobility required for reversible intercalation.

In a recent study, researchers from SSRL investigated the potential-dependent structure–property relationships, along with chemical changes, of Na$_3$V$_2$(PO$_4$)$_3$, a vanadium phosphate-based cathode for a Zn-metal battery (Figure). The Na$^+$ superionic conductor (NASICON) structure has Na$^+$ occupying two different crystal lattice sites: the Wyckoff 6b (Na1) and 18e (Na2) sites. It has been used earlier as a cathode material for sodium-ion batteries and showed promise in accommodating Zn-ions in the 18e sites after Na-ions are extracted. Researchers investigate the potential-dependent structure–property relationships, along with chemical changes, of Na$_3$V$_2$(PO$_4$)$_3$ using x-ray synchrotron-based methods to correlate crystal structure changes with the charge/discharge operation.

Figure. Schematic of the potential-dependent crystal structures associated with the charge and discharge cycle of Na$_3$V$_2$(PO$_4$)$_3$ determined from x-ray diffraction.
With a combination of *operando* and higher resolution *ex situ* x-ray diffraction measured at beam lines 11-3 and 2-1 at SSRL, researchers revealed a quasi-two-step insertion process with both Na\(^+\) and Zn\(^{2+}\) reversibly filling the 18e sites of the NASICON structure (Figure). The oxidation-reduction reactions associated with this quasi-two-stage electrochemical process and the presence of ionic Zn\(^{2+}\) was verified by x-ray absorption spectroscopy at the Zn and V K-edges. The results provide an exciting direction for utilizing a polyanionic framework for multivalent ion insertion and may be applicable to other divalent ions such as Mg\(^{2+}\) and Ca\(^{2+}\).

Primary Citation
J. S. Ko, P. P. Paul, G. Wan, N. Seitzman, R. H. DeBlock, B. S. Dunn, M. F. Toney and J. N. Weker, "NASICON Na\(_3\)V\(_2\)(PO\(_4\))\(_3\) Enables Quasi-Two-Stage Na\(^+\) and Zn\(^{2+}\) Intercalation for Multivalent Zinc Batteries", *Chem. Mater.* **32**, 3028 (2020) doi: [10.1021/acs.chemmater.0c00004](https://doi.org/10.1021/acs.chemmater.0c00004)

Contact

Johanna Nelson Weker, Stanford Synchrotron Radiation Lightsource

SSRL is primarily supported by the DOE Offices of Basic Energy Sciences and Biological and Environmental Research, with additional support from the National Institutes of Health, National Institute of General Medical Sciences.