ARPES on Quantum Materials

SSRL Town Hall Meeting, January 19, 2022

Donghui Lu

SSRL Science Foci Areas

SSRL

Stanford Synchrotron Radiation Lightsource

Strategic Plan: 2021-2025

Meeting the Scientific Challenges of the Future

Three Scientific Foci

- Accelerating Materials Design
- Understanding Catalytic Function & Interfacial Reactions
 with Atomic Precision
- Identifying How Collective Function Emerges from Constituent Interactions
 - Quantum Materials
 - Structural Molecular Biology
 - Geo- and Biogeochemistry

Development of ARPES Program at SSRL

C)

Evolution of Hemispherical Analyzer

Significantly improved energy/angular resolution and efficiency

Two Complementary ARPES Branch Lines at BL5

BL5-4: high resolution with excellent stability

- Complementary low photon energy (7 40 eV)
- High energy resolution ($\sim 2 \text{ meV}$)
- Excellent energy stability (~1 meV)
- Excellent vacuum quality ($\sim 2 \times 10^{-11}$ torr)
- Wide temperature range (5 400 K)
- Local heating with small heater on sample stage ⇒ Minimized outgassing during temperature cycle

4-jaw Plane aperture mirror Entrance 7-35 eV Slit Undulator E/ΔE~20,000 Scienta Normal Incident Monochromator Exit Focusing (NIM) Slit Mirror > 2×10¹¹ ph/s @ 10,000 RP (horizontal) Focusing $0.2(H) \times 0.1(V) \text{ mm}^2$ (FWHM) Mirror NIM branch line 5-4 (vertical)

BL5-2: micro-focusing with full polarization

- Wider photon energy (20 200 eV)
- Full polarization control: LH, LV, CL/CR
- High energy resolution ($\sim 2 \text{ meV}$)
- Micro-focused beam with excellent stability ($\sim 30 \times 5 \ \mu m^2$)
- Advanced analyzer with electron deflectors (DA30-L)
- Integrated DAQ software for automation (python)
- In-situ thin-film growth chambers (MBE)
- Sample environment, operando-ARPES

Vertical Phase Boundary at a Critical Doping in Bi2212

S.-D. Chen et al., Science 366, 1099 (2019)

- Systematic doping and temperature dependence study across a critical doping
- Wide range temperature dependence enabled by local sample heating to minimize sample aging

At 250 K well above Tc:

- >19%: coherent, quasiparticle-like antinodal dispersion
- <19%: broad, incoherent, quasiparticle not well defined
- Vertical phase boundary at 19% suggested
- Challenge existing interpretation of pseudogap QCP

Designing Higher-order Topological Insulator R. Noguchi *et al.*, Nature Materials 20, 476 (2021)

- First experimental demonstration that various topological states can be achieved by van der Waals stacking of quasi-1D chains
- A new playground for engineering topologically non-trivial edge states towards future spintronics applications
- Enabled by micro-focused beam

The Institute for

SOLID STATE PHY THE UNIVERSITY OF TOKYC

Sophisticated Material Synthesis Capabilities

- oxide MBE, chalcogenide MBE
- ARPES, STM/STS, RHEED, LEED
- *in-situ* growth, transfer and characterization
- Fe-SC, topological insulators, TMDC, Cuprates...

Lee *et al.*, Nature **515**, 245 (2014) Zhang *et al.*, PRL **117**, 117001 (2016) Zhang *et al.*, PRB **94**, 115153 (2016) Rebec, Jia *et al.*, PRL **118**, 067002 (2017) Zhang *et al.*, Nat Commu **8**, 14468 (2017)

Revealing Cuprate Microscopic Ingredients through 1D Chains Z. Chen *et al.*, Science 373, 1235 (2021)

First synthesis of chain cuprate thin film with controlled doping

In-situ ARPES provides opportunities :

- to study the rich 1D strongly correlated physics
- determine microscopic model and ingredients for general cuprate materials, because theoretical models can only be reliably solved in 1D.

Revealing Cuprate Microscopic Ingredients through 1D Chains

Z. Chen et al., Science 373, 1235 (2021)

- Single-band Hubbard model describe major dispersions up to 40%
- First identification of a folded branch from holon-holon interaction
- A simple Hubbard model is deficient in accurately reproduce experimental results

10

Collabortators

Cuprates

Yu He Stanford U

Makoto Hashimoto SSRL

Zhi-Xun Shen Stanford U

Topological Insulators

Ryo Noguchi U Tokyo

Takeshi Kondo U Tokoyo

Zhuoyu Chen SIMES

Zhong Yong SIMES

Rob Moore SIMES/ORNL