SSRL Science Highlights Archive

Approximately 1,600 scientists visit SSRL annually to conduct experiments in broad disciplines including life sciences, materials, environmental science, and accelerator physics. Science highlights featured here and in our monthly newsletter, Headlines, increase the visibility of user science as well as the important contribution of SSRL in facilitating basic and applied scientific research. Many of these scientific highlights have been included in reports to funding agencies and have been picked up by other media. Users are strongly encouraged to contact us when exciting results are about to be published. We can work with users and the SLAC Office of Communication to develop the story and to communicate user research findings to a much broader audience. Visit SSRL Publications for a list of the hundreds of SSRL-related scientific papers published annually. Contact us to add your most recent publications to this collection.

October 2013
Delia Milliron, LBNL
Nanocrystal in glass composites

Amorphous materials such as glasses have optical, electrochemical and transport characteristics that are closely linked to their inner structures. Modifying the structure of an amorphous material can create new properties that may be of interest for industrial applications. Recently, researchers have altered niobium oxide glass by inserting tin-doped indium oxide nanocrystals into its structure.

X-ray diffraction
September 2013
Jun-Sik Lee, SSRL

Perovskites are mineral oxides with unique properties of great interest to scientists. Many of these materials show remarkable transitions in their behavior. The perovskites lanthanum aluminium oxide (LAO) and strontium titanium oxide (STO), for instance, are insulators. However, when sandwiched together to an LAO/STO heterostructure, the material can conduct electricity at its interface. Researchers can tune conductivity and other emergent properties by doping the perovskites and hope to exploit heterostructures in future industrial applications such as new electronic devices.

X-ray Absorption Spectroscopy
BL10-1, BL13-1
September 2013
Stefan Mannsfeld, SSRL, Zhenan Bao, Stanford University
Fluence image

Organic semiconductor materials have great potential for the development of novel electronic devices. They are abundant, inexpensive, and can be used in transparent, flexible devices. The best performing organic semiconductors are single-crystalline thin films. However, they are difficult to make and their potential use in electronic devices strongly depends on how well the film can be oriented relative to the device’s electrical contacts as well as the ability to extend lab-based production techniques to industrial scales.

BL1-5, BL2-1, BL7-2, BL11-3
September 2013
Rodrigo Noriega, University of California Berkeley, Jonathan Rivnay, Centre Microélectronique de Provence (France), Michael Toney, SSRL, Alberto Salleo, Stanford University

Films of semiconducting organic polymers are major candidates for new materials, with industrial applications ranging from lighting equipment to solar cells to electronic devices. In order to fully exploit these materials, scientists must first understand how polymer films transport electric charge.

X-ray diffraction
BL7-2, BL11-3
August 2013
Jennifer Wilcox, Stanford University

The primary anthropogenic source of mercury (Hg) emissions into the atmosphere is coal-fired power utilities. This work explores materials designed for Hg capture to be applied in the ductwork of a power plant to prevent Hg release into the atmosphere. Bench-scale combustion experiments have been carried out, in which sorbent materials were placed in a simulated flue gas stream doped with ppb levels of Hg. The sorbent surfaces were probed using x-ray absorption spectroscopy to determine the mechanism of Hg binding and to ultimately improve solvent design. The spectroscopy data was analyzed alongside results from density functional theory (DFT) for benchmarking so that DFT can be used as a screening tool for material improvement and new design.

August 2013
Yuqiang Bi, University of Michigan, Kim Hayes, University of Michigan

Uranium (U) is one of the most prevalent radionuclide contaminants in soils and groundwater across the world as a result of nuclear fuel production, weapons manufacturing, and research activities. The environmental risks posed by U are determined largely by the degree of its mobility, which strongly depends on redox conditions.  Under oxic conditions, U(VI) is soluble and forms stable complexes with carbonate and calcium in groundwater. In contrast, reduced U(IV) species are often immobilized as sparingly soluble U(IV) solid phases such as uraninite (UO2) by biotic or abiotic redox processes.

X-ray Absorption Spectroscopy
BL4-3, BL11-2
July 2013
Debanu Das, JCSG, SSRL Structural Genomics
UCE figure

UCE plays a key role in the functioning of lysosomes, cellular sacs full of digestive enzymes that break down bacteria, viruses and worn-out cell parts for recycling. When this recycling process goes awry, it can cause rare metabolic diseases such as Tay-Sachs and Gaucher, which often cause death in affected children by their early teens. Three years ago, researchers discovered that three mutations in UCE itself were linked to persistent stuttering that is passed down in families.

Macromolecular Crystallography
July 2013
Xiang-Lei Yang, The Scripps Research Institute (La Jolla, California)
SerRs Image

During evolution, organisms added new domains to tRNA synthetases, which are believed to enable additional functions beyond protein synthesis. For the very first time researchers have established an essential role for an appended domain of tRNA synthetase in organisms.

Macromolecular Crystallography
July 2013
Nicole T. Schirle, The Scripps Research Institute, Ian J. MacRae, The Scripps Research Institute

Argonaute proteins play an important role in the biological process of RNA interference (RNAi).  Scientists have now determined the crystal structure of human Argonaute2, thereby making progress toward a detailed understanding of Ago2 interactions with target RNA which may benefit the design of novel RNAi therapeutics. 

Macromolecular Crystallography
July 2013
Jena E. Johnson, California Institute of Technology (

For most modern-day terrestrial life, oxygen has become indispensable. At the heart of oxygenic photosynthesis is the production of oxygen from water – a process mediated by the water-splitting manganese cluster of Photosystem II. Little is known about how oxygenic photosynthesis originally evolved, although some have hypothesized a manganese-oxidizing photosystem as a precursor step.

BL2-3, BL4-1, BL10-2


Subscribe to SSRL Science Highlights
Find Stanford Synchrotron Radiation Lightsource on FlickrFind Stanford Synchrotron Radiation Lightsource on YouTubeFind Stanford Synchrotron Radiation Lightsource on Twitter