XAS Applications James E. Penner-Hahn Department of Chemistry & Biophysics Program The University of Michigan

- Characterization of unknown protein
- Comparison with crystal structure
- Determination of solution structure
- When crystal structures are not enough
- Spatial localization

A case study in data under-determination

Clark-Baldwin, et al. "The limitations of X-ray absorption spectroscopy for determining the structure of zinc sites in proteins. When is a tetrathiolate not a tetrathiolate?" *J. Am. Chem. Soc.* **1998**, *120*, 8401-8409.

Zn EXAFS is remarkably insensitive to changes in ligation. PUMIT

30

25

20

ZnS

12

XANES spectra *are* sensitive to ligation

but show greater variation Normalized Absorption (cm²/g) between different compounds than with changes in ligation.

Zn-S and Zn-N EXAFS signals are approximately out of phase

The observed EXAFS for mixed S/N sites is dominated by Zn-S scattering

One solution is to measure data over wide k range (ZnS₂N₂ inorganic)

Note $-\Delta R \sim 0.25 \rightarrow \pi/2\Delta k = 0.25 \text{ Å} \rightarrow \Delta k_{\min} \sim 6.3$

High resolution EXAFS is required to reliably distinguish Zn-S from Zn-N ...

...and even with high resolution data, extremely high signal/noise ratios are required to detect Zn-N in the presence of Zn-S

Homocysteine

Homocysteine + Me-X = Methionine + HX *E. coli* has two methionine synthases MetH – cobalamin dependent methionine synthase

MetE – cobalamin independent methionine synthase XAS Applications

MetE (cobalamin independent MetSyn) contains Zn

Zn is tightly bound Zn is required for activity Is Zn involved in reaction, or does it play a structural role? The Zn site in MetE (cobalamin independent MetSyn) has $ZnS_2(O/N)_2$ ligation.

Addition of homocysteine changes ligation to $ZnS_3(O/N)$.

MetE Zn site changes on substrate binding MetH (cobalamin dependent) also contains Zn

Changes in ligation are due to homocysteine binding to Zn

Fourier Transform Magnitude

Se EXAFS confirms structural picture of MetE and MetH sites

Combination of Zn + Se EXAFS consistent with only a small distortion from tetrahedral geometry in substrate-bound enzyme

Protein Farnesyl transferase

Protein Farnesyl transferase

Ten FTase crystal structures are known

	Zn-S	Zn-S	Zn-O	Zn-O	Zn-O	Zn-N
	Pep	C ₂₉₉	H_2O	D ₂₉₇	D ₂₉₇	H_{362}
FTase		2.22	2.74	2.00	2.56	2.48
+FPP		2.27	3.22	1.99	2.03	2.10
		2.42	NA	2.38	3.05	2.64
Ternary	2.48	2.21		1.90	2.45	2.24
	2.40	2.26		1.99	2.61	2.18
	2.35	2.21		2.08	2.55	2.17
	2.41	2.33		1.97	2.53	2.21
	2.75	2.29		2.22	2.67	2.34
Product	2.66	2.27		2.06	2.42	2.18
Product+		2.30		2.13	2.42	2.25
FPP						

Zn is 4-coordinate; peptide sulfur binds only in ternary complex

Carboxylate shift may play an important role in activating peptide thiolate

Biological Zn sites

J. Am. Chem. Soc., **112** (10) 1990 p. 4031-4032

> "Higher Order" Cyanocuprates R₂Cu(CN)Li₂: Discrete Reagents or "Lower Order" LiCN-Modified Gilman Cuprates?

Bruce H. Lipshutz,* Sunaina Sharma, and Edmund L. Ellsworth*

as R₂CuLi-LiCN. We now describe, using spectroscopic studies, prima facie evidence in support of HO cyanocuprates.

p. 4032-4034

"Higher-Order" Cyanocuprates: Are They Real?1

Steven H. Bertz

It can now be reported that the reagents prepared from 2 equiv of RLi (R = alkyl or aryl) and 1 equiv of CuCN may not be truly higher order *ate* complexes of Cu. ¹³C NMR spectral evidence **EXAFS** shows that CN⁻ does not remain bound

Structures of cyanocuprates in THF

Solution speciation of CuI+PhLi PhLi + CuI → "phenylcopper" 2PhLi+ CuI → "diphenylcuprate"

Crystalline phenyl:copper species

- 1.2.1 $[Cu_{3}I h_{6}]^{-}$ 1.5:1 $[Cu_{4}LiPh_{6}]^{-}$ $[Cu_{4}MgPh_{6}]$

Titration of CuI+ n PhLi shows isosbestic behavior up to 1.2 equivalents

Titration of CuI+ *n* PhLi shows isosbestic behavior from 1.2-2.0 equivalents

EXAFS data support XANES speciation

Inorg. Chem. 1994, 33, 1249-1250

EXAFS Evidence That the CuCl₆⁴⁻ Ion in (3-Chloroanilinium)₈(CuCl₆)Cl₄ Has an Elongated Rather Than Compressed Tetragonal Geometry

Paul J. Ellis,[†] Hans C. Freeman,^{*,†} Michael A. Hitchman,^{*,‡} Dirk Reinen,[§] and Burghard Wagner[§]

How to screw up you're the analysis of XAS data

or

some common errors, how to identify them, and how to (maybe) avoid them

Biological X-ray Absorption

• The job of a least-squares fitting program is to give you the best (smallest deviation) solution, *not* to give you the right solution.

• If you see something, it tells you something; if you see nothing, it tells you nothing.

Common errors in EXAFS analysis

- Least-squares minimization
- Fourier Filtering
- Resolution

Iterative refinements are especially susceptible to multiple minima

M-O at 2.0 and 2.2 Å give two apparently well resolved peaks in FT

Fitting each filtered peak gives the appearance of M-O and M-S EXAFS

Biological X-ray Absorption

EXAFS resolution is $\sim \pi/2\Delta k =$ 0.13 Å

Summary

- The more variables you control, the more likely you are to obtain a unique solution
- Multiple data sets (elements, temperature, concentration, time, etc.) almost always help
- Conclusions are only as good as your model

Outer shell scattering can provide ligand identification and geometric information

Multiple scattering makes EXAFS sensitive to angular arrangement of ligands

Dependence of XANES on Oxidation State

46

Mn XANES of PS II versus x-ray dose and XANES of inorganic model compounds.

Yano J et al. PNAS 2005;102:12047-12052

Spectral changes of PS II Mn EXAFS due to radiation damage with FTs (Left) and the k3-space EXAFS (Right).

Yano J et al. PNAS 2005;102:12047-12052

X-ray fluorescence imaging

Korbas M et al. PNAS 2008;105:12108-12112

Elemental distributions in MeHg exposed and unexposed zebrafish.

Korbas M et al. PNAS 2008;105:12108-12112

Se K x-ray absorption near-edge spectrum of A.

Pickering I J et al. PNAS 2000;97:10717-10722

Data reduction scheme for the method of chemically specific imaging.

Pickering I J et al. PNAS 2000;97:10717-10722

Chemically specific concentration images of different parts of A. bisulcatus.

Pickering I J et al. PNAS 2000;97:10717-10722

