Dynamic and static local distortions – relationships between local structure and macroscopic properties.

Frank Bridges UCSC

Lisa Downward

- Motivation for studying temperature dependence of local structure
 Broadening parameter σ relationship with other techniques; split peaks vs broadened peaks
 Need for high signal-to-noise data: Collection and reduction of transmission EXAFS data – powder samples (manganite) with an unfocused Beamline.
 Yu Jiang Jesse Guzman Cooper Downs Travis O'Brien John Mitchell John Neumeier
- 4. Examples manganites and cobaltites (Jahn-Teller distortions)
- 5. Examples rattler systems skutterudites and clathrates
- 6. Examples negative thermal expansion

UESE

Nalini Sundaram

D. Belanger

Support NSF

SSRL Local structure workshop

Motivation

- Some systems have a Jahn-Teller distortion e.g. the six O atoms around Mn^{+3} in LaMnO₃ are not equivalent; there is a distortion with two long bonds and 4 shorter bonds (the four are slightly split). In contrast for CaMnO₃, the 6 Mn⁺⁴-O bonds are equal within 0.01Å. The competition between distorted and undistorted sites determines the magnetic and transport properties in substituted manganites (La₁. $_xCa_xMnO_3$) which are metallic and ferromagnetic at low T for some concentrations x, but non-metallic and insulating at high T.
- In large-unit-cell systems an atom may be weakly bonded to the rest of the crystal can have large vibration amplitudes called a "rattler". This disorder can strongly scatter thermal phonons and lead to a glass-like, low thermal conductivity.
- Parts of some systems may have very stiff bonds in that case may need to consider some polyhedra (eg a tetrahedra) as a rigid unit. This unit acts like a "large atom". Other parts of the unit cell have weaker springs can lead to interesting properties.
- All these properties require knowledge about the vibrations of various bonds or atom-pairs in the system usually described in terms of the width σ , of the atom-pair distribution function.

SSRL Local structure workshop

EXAFS Equation

 $\sum_{i}^{600 \ 600$

Simplify to first neighbor peak only (we will fit in r-space – Fourier transform space) Use either:

FEFF to generate a theoretical standard (calculate $F_i(k,r)$, δ_c , δ_i)

$$k\chi_{Mn-O}(k) = e^{-2k^2\sigma^2} A \left\{ \left[F(k,r_0)/r_0^2 \right] \sin(2kr_0 + 2\delta_c(k) + \delta(k)) \right\}$$

 \leftarrow

or an experimental standard

$$k\chi_{Mn-O}(k) = e^{-2k^2(\sigma^2 - \sigma_o^2)} A' \left\{ e^{-2k^2\sigma_o^2} N S_o^2 [F(k, r_0) / r_0^2] \sin(2kr_0 + 2\delta_c(k) + \delta(k)) \right\}$$

SSRL Local structure workshop

Frank Bridges – UCSC May/08

Experimental standard

$$\sigma^2_{total} = \langle ((\delta R_A - \delta R_B) \cdot r_{AB})^2 \rangle$$

- Displacements δR_A and δR_B for atoms A and B, can be static or dynamic.
- σ² is the second moment of the pair -distribution function.
- Primarily sensitive to radial displacements

For uncorrelated mechanisms:

$$\sigma^2_{\text{total}} = \sigma^2_{\text{static}} + \sigma^2_{\text{thermal}} + \sigma^2_{\text{polarons}} +$$

SSRL Local structure workshop

Contributions to σ^2

- Thermal phonons Einstein or Debye models.
- **Polarons** a distortion associated with a partially localized charge.
- **Static distortions** distribution of pair distances from strains, impurities, etc.
- Off-center displacements
- An (unresolved) split peak effective σ is
 - ~ $\Delta r/2$ where Δr is the peak splitting.
- $\Delta r \sim \pi/(2k_{max})$ to resolve

Simple example – isolated atom pair

SSRL Local structure workshop

Split peaks and $\boldsymbol{\sigma}$

When one has a split peak with small splittings it contributes to the broadening (See book by B. Teo), easiest seen at low T.

$$\sigma^2 = \sum_{j=1}^{N} \frac{(r_j - r_o)^2}{N}$$

Equal splitting of 6 bonds into two groups split by Δr

 $\sigma = \Delta r/2$

Splitting into three peaks with equal splittings Δr .

Then $\sigma = (2/3)\Delta r$

SSRL Local structure workshop

Comparison between Einstein and Correlated Debye models – T Dependence I (Simple systems)

Einstein model

(local modes, optical modes) $\sigma_E^2 = \frac{\hbar^2}{2M_R k_B \Theta_E} \operatorname{coth}(\frac{\Theta_E}{2T})$ $= \frac{k_B \Theta_E}{2\kappa} \operatorname{coth}(\frac{\Theta_E}{2T})$ $= \langle Energy \rangle / \kappa$ $\approx k_B T / \kappa; \text{ at high T}$

At T~0, $\sigma_E^2(0) = \hbar^2/(2M_Rk_B\Theta_E) = k_B\Theta_E/(2\kappa)$

 M_R – reduced mass

 κ – Spring constant

 $\Theta_{\rm E}$ – Einstein Temperature

 Θ_{cD} – Correlated Debye Temperature; $\Theta_{cD} = \hbar \omega_{cD}/k_B$

c – effective speed of sound = ω_{cD}/k_D

SSRL Local structure workshop

Frank Bridges – UCSC May/08

Positive correlations – finite wavelength, acoustic modes

Correlated Debye Model

(All modes; sometimes restricted

to Acoustic modes)

 $\sigma_{cD}^{2} = \frac{\hbar}{2M_{P}} \int_{0}^{\omega_{cD}} \frac{3\omega}{\omega_{pD}^{3}} \coth\left(\frac{\hbar\omega}{2k_{P}T}\right) C_{ij}(\omega) d\omega$

 $C_{ij} = 1 - \frac{\sin((-\omega / c) R_{ij})}{(\omega / c) R_{ij}}; \qquad R_{ij} \text{ is for atom pair ij}$

Temperature Dependence of σ^2 II

Some general properties:

- For thermal vibrations $\sigma^2_{\text{thermal}}$ vs T has a positive slope; linear with T at high T. Einstein model has a sharper bend with T.
- Zero-point motion determines $\sigma^2_{thermal}$ at low T for Einstein Model, should correlate with appropriate Raman mode .
- If static disorder present (σ^2_{static}), produces a rigid vertical shift $[\sigma^2 = \sigma^2_{\text{static}} + \sigma^2_{\text{thermal}}]$.

SSRL Local structure workshop

General Beamline/data collection requirements for transmission EXAFS

- 1. Uniform X-ray beam over sample. A non-uniform X-ray beam profile (I₀(x,y)) couples with non-uniformities in the sample thickness. Good energy resolution, low harmonics.
- 2. Linear detectors, amplifiers, and linear digitization over a wide dynamic range 10⁴ -10⁵ (10⁶?) gas ionization detectors keep recombination rate low in detectors I₀, I₁, and I₂. Can become non-linear when ionized region is too dense and not all electrons are extracted (focused beamlines, high synchrotron current --).
- 3. Uniform sample-thickness: pinholes, cracks, taper in thickness; all vary the local thickness. Because the ln function is non-linear, variations in thickness do not completely average out. (similarly for an inhomogeneous composition for doped samples – but more complicated)

SSRL Local structure workshop

$$I_{1} = I_{o} e^{-\mu t}$$

$$\mu t = \ln(I_{o} / I_{1})$$

$$(\mu t_{i}) = \ln(I_{o_{i}} / I_{1_{i}})$$

$$(\mu t_{i}) = \ln(I_{o_{i}} / I_{1_{i}})$$

Coupling between Beam Intensity nonuniformity and sample non-uniformity

• The signal obtained from a detector is an integral over the cross-sectional area of the beam.

$$I_{o} = \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} F(x, y, E) dx dy$$

$$I_{1} = \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} F(x, y, E) e^{-\mu(E)t(x, y)} dx dy$$

F(x,y,E) is the X-ray flux (I/area)

slit width a, slit height b

μ(E) absorption coefficient

t(x,y) sample thickness.

Simple case: One dimension and assume F(y,E) and t(y) vary linearly with y; $t(y) = t_0(1 + \alpha y)$; $F(y,E) = F_0(E)(1 + \beta y)$

and
$$\mu(\mathbf{E})\mathbf{t}_{o} \alpha \mathbf{y} \ll 1$$
; $\exp(-\mu(\mathbf{E})\mathbf{t}_{o}\alpha \mathbf{y}) \sim (1 - \mu(\mathbf{E})\mathbf{t}_{o}\alpha \mathbf{y})$
 $I_{1} = F_{o} e^{-\mu(E)t_{o}} \int_{-b/2}^{b/2} (1 + \beta \mathbf{y})(1 - \mu(E)t_{o}\alpha \mathbf{y}) d\mathbf{y}$
 $= F_{o} b e^{-\mu(E)t_{o}} (1 - \mu(E)t_{o}\alpha\beta b^{2} / 12)$
 $= I_{o} e^{-\mu(E)t_{o}} (1 - \mu(E)t_{o}\alpha\beta b^{2} / 12)$

SSRL Local structure workshop

Frank Bridges – UCSC May/08

Non-uniformities couple when both Io and t vary spatially

For small α and β , correction 10⁻³ to 10⁻⁴

Example – pre-edge removal La_{0.7}Ca_{0.3}MnO₃: a CMR system with large Jahn-Teller distortion

Need to subtract the "background" absorption from other atoms in the Xray path – air, windows, other atoms in sample, other absorption edges, etc. Assumptions:

1. The background absorption is a smooth function of energy over EXAFS region.

2. We can use the Victoreen formulas and the edge step height to obtain the correct slope of data above the edge.

$$\mu_T(E) = \mu_{background}(E) + \mu_{edge}(E)$$
$$\mu_{edge}(E) = \mu_T(E) - \mu_{background}(E) = \mu_o(E)(1 + \chi(E))$$

SSRL Local structure workshop

Frank Bridges – UCSC May/08

Mn K-edge

Pre-edge subtracted data and k-space data

SSRL Local structure workshop

Note - all files overlap extremely well– otherwise it will cause small differences in the value of σ extracted.

Slope correction: $\mu_0(E) \sim \mu_1(E)(1-\alpha(E-E_0))$ $= \mu_1(E)((1-2\beta^2k^2))$

Next, Fourier Transform k-space data to r-space.

Assumption: need to set low end of transform window.

- for Mn, $k_{min} = 3.5 \text{Å}^{-1}$.

Post-edge background

Above E_o , fit post-edge background to series of splines (or a polynomial) – adjust start of this fit (E_{min}) to minimize any low frequency oscillations. Assumptions/input

$$\mu_{edge}(E) = \mu_o(E)(1 + \chi(E))$$
$$\chi(E) = \frac{\mu_{edge}(E) - \mu_o(E)}{\mu_o(E)}$$

 $k = 0.512\sqrt{E - E_o}; \qquad E - E_o = \gamma k^2$

UCSC

r-space data - reproducibility

SSRL Local structure workshop

Reproducibility of Data and Fits

CaCu₃Ti₄O₁₂

 $La_{1,2}Sr_{1,8}Mn_{2}O_{7}$

SSRL Local structure workshop

3 or 4 trace average of peak amplitudes in r-space error bars are the rms variation in amplitude.

Relative errors ±1-3%

Error bars comparable to scatter.

Fit to real and imaginary part of FT, vary σ and r; fix coordination number.

Use same FT window for data and standard – fit and σ^2 are then almost independent on FT range.

Determine S_0^2 at low T and keep S_0^2 constant for higher T data. To first order: errors in S_0^2 produce vertical shift of $\sigma^2(T)$.

EXAFS -manganites

PRL 95 106401 2005

σ²(T=0) gives zero-point motion value. For a simple split peak, $σ_{static} = \Delta R/2$ Step in σ²(T) corresponds to $\Delta R < 0.13$ Å

 $\sigma_{total}^2(T) = \sigma_{static}^2 + \sigma_{phonons}^2(T)$

Relationship to macroscopic properties

At high T large J-T distortion – the long bonds inhibit electron hopping and decrease the conductivity significantly.

At low T the electrons hopping faster than phonons – lattice does not have time to react. Fast electron hopping means good conductivity.

When electrons hop rapidly they couple magnetic moments on the Mn sites – leads to ferromagnetism

- T_c about 260K for this system.

SSRL Local structure workshop

σ² vs T plots for La_{1-x}Sr_xCoO₃

Mn (LCMO) results from PRB 76, 224428 (2007).

Above: Comparison between a manganite (22% Ca) which shows a large J-T distortion and cobaltite (20% Sr) which has no indication of a J-T distortion. σ^2 at low T is close to zeropoint motion value.

Correlated Debye fits to data for a variety of samples Similar σ^2 near T=0, Similar Θ_{D} .

Debate about magnetism – Co can have a low spin state S=0, a high spin state S=0, and perhaps an intermediate state S=1; the S=1 spin state should be J-T active – but no evidence for a distortion. Suggests M is a mixture of S=0 and S=2.

SSRL Local structure workshop

Can see static changes

Nanoparticle samples (20-50 nm) stored on tape (in glue) for a year show increased disorder compared to as-made samples or samples stored as a powder and fresh EXAFS samples prepared.

Possibly an oxidation from contact with glue.

More complex crystals

Some unit cells are composed of two or more molecular units – such as "dumbells", tetrahedra, or octahedra, with very strong bonds within the molecular unit but much weaker "springs" between them .

Other structures form cages that can contain other atoms, weakly bound.

Cage structure: skutterudite

Blue atom is weakly bonded to cage; small spring constant.

All described by Einstein models for nearest neighbor bond.

SSRL Local structure workshop

Thermoelectrics – filled skutterudites LnT₄X₁₂ Ln rare-earth, T =Fe,Os,Ru; X=P,As,Sb

SSRL Local structure workshop

Skutterudites LnT₄X₁₂ Ln rare-earth, T =Fe,Os,Ru; X=P,As,Sb

Blue: filler atom (Ce); white: T (Fe); red: X (Sb)

Ce has 12 Sb nearest neighbors and 8 Fe 2nd neighbors

Contrast (CeFe₄Sb₁₂)

Fe-Sb lattice quite stiff – from both the Fe or Sb perspective – stiff springs.

Ce-Sb and Ce-Fe "bonds" are very soft – weak springs.

Two characteristic energies

Properties relevant for thermoelectric applications:

- Good electrical conductivity. Fairly good figure of merit.
- Glass-like thermal conductivity -- why?
- What are the vibration properties of the filler atom?
- Is the filler atom off-center?
- How does the rattling behavior depend on type of rattler, or antimonide vs phosphide?

SSRL Local structure workshop

Fe and Ru k-edges – antimonides are the cages rigid?

SSRL Local structure workshop

Einstein model for Ce rattler

 $\sigma_{E}^{2} = C/(M_{R}\Theta_{E}) \operatorname{coth}(\Theta_{E}/2kT) + \sigma_{\text{static}}^{2}$ Three parameters M_{R}, Θ_{E} , and $\sigma_{\text{static}}^{2}$

\mathbf{Sample}	lattice constant (Å)	Θ_E (K)	$\sigma^2_{static}({\rm \AA}^2)$
$\mathrm{CeFe_4P_{12}}$	7.792	148	0.0015
${\rm CeRu}_4{\rm P}_{12}$	8.038	125	0.0012
$\rm CeFe_4Sb_{12}$	9.135	86	0.0018
$\rm CeRu_4Sb_{12}$	9.266	73	0.0010
$CeOs_4Sb_{12}$	9.299	71	0.0020

- Treat cage as rigid use Ce mass as the oscillator mass
- No significant static contribution to $\sigma^2 Ce$ is not off-center.
- Einstein temperature decreases as the cage size increases.
- Similar Einstein temperatures for Eu, Yb, and Pr filler atoms

Metal-Insulator transition in PrRu₄P₁₂

Macroscopic behavior

- Metallic above 60K
- Insulating below 60K Why?
- Sekine *etal* did not find evidence for a structural transition

Sekine etal PRL 79 3219 1997

SSRL Local structure workshop

Simulations for split peaks

Data: – sum of two split peaks, splittings 0.1, 0.15, and 0.2Å; $r_{av} = 1.93$ Å; broadened with corr. Debye model ($\theta_{cD} = 500$ K)

Fits: fit to one FEFF peak, r-range, 0.8-1.8Å, k-ranges 3-9, 3-11, 3-16 Å; N and E_0 constant. σ^2 independent of k-range. Red - .1Å, Blue – 0.15Å, Purple – 0.2Å

Dotted lines – assuming $\sigma^2_{\text{static}} = \Delta r/2$ (Teo '86)

Extracted θ_{cD} very close to initial value (1%) in all cases.

Static value of $\sigma^2_{\text{static}} > \Delta r/2$; an upper limit on any splitting

SSRL Local structure workshop

Frank Bridges – UCSC May/08

Data: above 100K, single peak; below 100K splitting develops, Black: $\Delta r = .05$ Å, Red: 0.1Å. Peaks broadened using corr. Debye model ($\theta_{cD} = 500$ K)

Purple line shows fit to corr. Debye model.

Black and Red squares show increased σ^2 below 100K.

Relative deviation depends on θ_{cD} and reduced mass.

Ru k-edge -- Phosphide

Very high Debye temperature (700K) for phosphides – stiff cage.

Quite low Einstein temperature (127K)

Metal/Insulator transition in PrRu₄P₁₂

- Nothing clearly unusual about σ^2 for Pr rattler or Ru-P distribution
- Unusual increase in σ^2 for Ru-Ru -- σ^2 increases below 60K!
- Corresponds to a small lattice distortion (rotation of RuP₆) with little distortion of Pr-Ru; two Ru sites.
- Confirmed by recent diffraction study Iwasa etal, PRB 72, 024414 (2005)

SSRL Local structure workshop

Frank Bridges – UCSC May/08

D. Cao etal PRL 94, 0364031 (2005).

Clathrates: -Background and Data Collection

- Sr₈Ga₁₆Ge₃₀ and Eu₈Ga₁₆Ge₃₀ Clathrates are promising thermoelectric materials – most are n-type semiconductors, with a relatively high Seebeck coefficient and are poor thermal conductors (glass-like).
- Low thermal conductivity is attributed to the "rattling" of the Sr or Eu atoms within the large cage called site 2; ie Sr2 or Eu2. Cage is SrX₂₄ or EuX₂₄; X= Ga/Ge. Diffraction indicates that Sr and Eu are offcenter in site 2.
- Eu and Sr on-center in smaller site 1 cage (gray).
- Data collected on beamline 4-3 at SSRL using Si <220> monochromator crystals for Sr, Ga, and Ge K-edges and Eu L_{iii}-edge.

Clathrate structure

Macroscopic properties – high quality crystal, good electrical conductivity, poor thermal conductivity

SSRL Local structure workshop

- Low thermal conductivity is attributed to the "rattling" of the Sr or Eu atoms within the large cage called site 2; Cages are SrX_{24} or EuX_{24} ; X= Ga/Ge. Sr and Eu are off-center in site 2; κ is suppressed - good for thermoelectrics
- Eu and Sr are on-center in smaller site 1 cage (gray).

Structure of the Sr2 (or Eu2) site

- Central atom is Sr.
- Blue atoms nearest neighbor M3 sites ~ 3.6Å
- Purple atoms M1 sites ~ 3.78Å.
- Yellow atoms M2 sites ~ 3.98Å.
- **Red atoms** further neighbor M3 sites ~ 4.15Å

Off-center directions (four sites)

- 24k sites along the b or c axes, $(0,\Delta,0)$ or $(0,0,\Delta)$.
- modified "24k"site; off-center towards most distant M3 site (red atoms) (δ,Δ,0).
- 24j sites along (0, Δ, Δ); midpoint between two M2 sites (yellow atoms). Poor fit for EXAFS and diffraction.

SSRL Local structure workshop

Ga and Ge EXAFS of Eu₈Ga₁₆Ge₃₀

- Ga and Ge k-edge EXAFS very similar
- Weak T-dependence of 1st peak
 - \rightarrow Stiff Eu1 and Eu2 cages
 - → High Debye Temperature, 400K
- Nearly identical results for Sr₈Ga₁₆Ge₃₀

EXAFS of rattler atoms Eu and Sr

Eu₈Ga₁₆Ge₃₀ – Eu L_{III}-edge

Sr₈Ga₁₆Ge₃₀ – Sr k-edge

Baumbach etal PRB 2005

- •Eu and Sr EXAFS strongly T dependent
- •First peak mostly near 3.2 Å -- but expect it to extend to ~4 Å
- •To fit Eu2 use 4 groups of neighbors with different $\sigma^{2}s$
- •Requires that near neighbors have small σ , more distant neighbors within cage have a large σ
- •Off-center Eu2 or Sr2 bonded to side of cage!!

SSRL Local structure workshop

Einstein model for Eu1 and Eu2

Einstein temperature for Eu2 nearest neighbors higher than for Eu1! This is a measure of radial vibrations – quite different than the low average Einstein temperature from diffraction thermal parameters.

SSRL Local structure workshop

Example of unusual correlations

Large motions of WO₄ tetrahedra (and ZrO₆ octahedra) but very small vibrations of W-O!

Background: ZrW₂O₈

Ramirez et al, Physical Review Letters 80, 1998

Cubic crystal structure

- ZrO₆ (yellow) octahedra and WO₄ (red) tetrahedra corner linked; two types of W-- (W(1)with O(1) and O(4) neighbors and W(2) with O(2) and O(3) neighbors).
- Zr-Zr distance determines lattice constant.
- W(1)O₄ and W(2)O₄ tetrahedral units not constrained along <111> axis. The O3 or O4 along the <111> axis is not connected to another unit.
- WO₄ tetrahedra are very stiff Raman measurements yield ~ 1000 cm⁻¹ (~ 1500K) for the compression mode.

SSRL Local structure workshop

σ^2 vs. T for ZrW_2O_8

- σ^2 for W-O nearly independent of T
- Very small zero-point motion (0.0012Å²) zero-point motion from Raman energies ~ 0.0011Å²
- σ^2 for W-W has a strong T dependence
- Large zero-point motion contribution (0.0045Å²)
- σ^2 for Zr-O weak T dependence
- σ² for Zr-Zr very strong T dependence

Strong Correlations

 $W-involved in small amplitude (high frequency) W-O mode and large amplitude (low frequency) <math display="inline">WO_4-WO_4$ mode.

 $\sigma^2_{EXAFS} = U^2_A + U^2_B - 2U_A U_B \phi$

where U_A and U_B are atomic displacement parameters from diffraction, but need good anisotropic parameters

Controversy with PDF

Strong Correlations

W – involved in small amplitude (high frequency – 125 meV) W-O mode and large amplitude (low frequency) WO₄–WO₄ mode.

Neutron PDF needs to integrate over a large enough energy range to probe high frequency correlations.

- Structure has two WO₄ tetrahedra, W-O bonds strongest in structure.
- 4 closely spaced W-O peaks.
- σ^2_{EXAFS} for W-O nearly independent of T
- Very small zero-point motion (ZPM) value - 0.0012Å²;
 ZPM from highest Raman energies ~ 0.0011Å²
- $\sigma^2_{cluster}$ calculation; comparable to σ^2_{EXAFS} ZPM value ~ 0.0013Å².

Need joint EXAFS/PDF studies on same sample material

SSRL Local structure workshop

Conclusions

- In complex structures, σ^2 can arise from a combination of mechanisms a T dependence can help separate them.
- In some systems there are several characteristic temperaturesoften associated with different parts of the unit cell.
- Significant correlation effects can be observed in addition to the often used, correlated Debye model.
- For large open unit cells, molecular clusters can behavior much like large atoms in low energy vibrations.
- In some cases the same atom can be involved in a low frequency Einstein mode and also a very high frequency Einstein mode.
- When several mechanisms operative, only parts of the displacements are correlated.
- Shown that for uniform powder samples and unfocused beamline can obtain very high reproducibility in EXAFS data [not usually attainable using focused beamlines].

