X-Ray Absorption Spectroscopy:
Practical Aspects

John Bargar, May 20, 2008
SSRL School on Synchrotron X-ray Absorption Spectroscopy
Techniques in Materials and Environmental Sciences: Theory and
Application



XAS: What you get out of the measurement:

Basic Experiment :

XANES / NEXAFS
Oxidation state,

Molecular structure,
Electronic structure.
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=XANES (X-ay Absorption Near Edge Structure)
=NEXAFS (Near Edge X ray Absorption Fine Structure)

EXAFS oscillations ——> (EXAFS = Extended X ray

Absorption Fine Structure)

~EXAFS
Quantitative Local Structure.
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...+ Synchrotron-Based Techniques.
fe Key Advantages

Three Major Categories
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|. Set-up and optimization of
beam lines
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l. Beam line set-up and optimization

* Major elements of in-hutch equipment

» Major elements outside of hutch

* lon chambers and their output signal chain
* Mono tuning - why, how, and how much?
« Slit size for samples, impact on resolution

* Energy calibration: why, how, how frequently?



) |. Beam line set-up and optimization:
In-hutch instrumentation
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|. Beam line set-up and optimization:
Out-of-hutch instrumentation
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|. Beam line set-up and optimization:Jp
lon Chambers |
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|. Beam line set-up and optimization:

Monochromator tuning

Fundgmental armonjc
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Bragg’s law:

n'A = 2:d"sin(@)

n=1: “fundamental”
n>1 : “harmonic”

“Detuning”: rotating 2" crystal
slightly away from diffraction condition.

— Reduces contribution from
harmonics!

— Typical values:
~40% @ 6 keV
~25% @ 13 keV
~15% @ 20 keV
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|. Beam line set-up and optimization:
Choice of monochromator crystal

Si(220): Energy range: ~4 to 40 keV, higher E resolution

Si(111): Energy range: ~2 to 20 keV, lower E resolution
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. Beam line set-up and optimization:
Slits control energy resolution!
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|. Beam line set-up and optimization:
Mono energy calibration

Calibration
Sample foil
Ion chamber detector Ion chamber detector Ion chamber detector
X-ray beam
1, I I,
Calibration foil located between |, & ..
1.6 T T
Remove foil after taking calibration (check |, T Q
calibration between every other sample). g \
. . . - 8 1 -
- OR — use calibration foil different from £ ol soevaw
sample element (continuous calibration). 3 0
E 04 Inflection Points:
Calibrate on first inflection point of rising 02 f
edge (preferred) Or On top Of White |ine' 107150 17‘;60 17':70 171180 17190
Energy (eV)

Use consistent energy resolution!. mono
crystal, same slit opening. Good strategy:
close slits so spectrometer resolution is <
core hole life time.
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Il. Sample alignment and detectors

» Transmission vs fluorescence geometry
* Transmission geometry
» Lytle detectors for fluorescence yield detection

» Ge detector: highly dilute, chemically complex samples



e Il. Sample alignment and detectors:
<= | Transmission vs. fluorescence geometry

Advantages Requirements Comments
Transmissgion Simple Constant sample Eliminate
mode with Collect 100% of signal density, thickness!!!!! harmonics!
ion chambers No count-rate limitation Concentrated, rel.

pure samples.

Fluorescence Simple > 500 ppm Beware: over-
mode with ion Collect ~10% of sphere No strong interfering absorption!
chambers No count-rate limitation elements
Fluorescence Excellent for dilute < 300 KHz count rate  Beware: over-
mode with samples or samples total count rate absorption and
energy-dispersive samples with interfering dead-time!
detectors fluorescence lines
Examples
Concentrated solids: grind to fine powder, thoroughly mix with BN or LiCO;, use trans mode.
Thick solid suspensions: run in trans if mechanically stable and can make thin enough.
Aqueous solutions: typically fluor mode with E-disp. detector. Maximize concentration.
Soils: fluojmode typically with E-disp. detector
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Il. Sample alignment and detectors:
Transmission geometry

lon chamber detector

X-ray beam

Sample

ﬁmﬁ

Ion chamber detector

i f §
|

Beware, 10 and 1 can contain “junk”
intensity not proportional to EXAFS:

e.g.,

|, = data + pinhole intensity + harmonics

+ dark current

When junk intensity ~ data then spectra

will be screwed up!

Beer's law:
Absorbance ~ (Lnly/I,)

100000 +

4
Data
pinhole
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Il. Sample alignment and detectors:

Transmission geometry

And, your data will look like:

Rules for transmission samples:
* Must be homogeneous on 7 um scale
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» Use small slits —typically NOT count-rate limited!

* Must be of rigorously constant thickness
» Must rigorously eliminate harmonics
» Must measure/subtract dark current

* |deal sample: |, drops by 70 to 90% over edge

I
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e/

T
172350
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Il. Sample alignment and detectors:
How to prepare transmission samples

Ideally, wish to prepare powder samples that have the same
homogeneity of a ~2 um-thick metal foil!

How do we do this in a sample that is typically ~1 mm thick?

» Proper density — achieved by mixing small quantity of sample into a
weakly-absorbing matrix.

» Typical matrices: BN, sucrose, Al,O,. Al,O, is often best
because it is not redox active and it is very hard, so it can be
used to further mill the sample.

* How much compound to add? — Can be calculated using web tools
at hitp://www.cxro.lbl.gov/ to obtain ~80% absorption by the metal
of interest above the edge. Typical ratio is 20 mg of sample in 70
mg of BN or Al,O..

 Homogeneity — is achieved by first milling your sample and matrix
separately and thoroughly using mortar/pestle to obtain particle size
<1 ym. Then, weigh sample into matrix and continue to mix

» Must be of rigorously constant thickness: load into stiff sample
holders.

* Pressing pellets is helpful, but beware of preferred particle
orientation!
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Il. Sample alignment and detectors:
Fluorescence geometry

Dilute sample paradigm — assumes
absorption of beam is so weak that it
does not corrupt amplitudes from rear of ‘ " ]

sample. B e -

Concentrated samples will suffer
amplitude reduction, so called, “over- Front Rear
absorbance” effect.

1.5

1 1 1
Transmission Spectrum

]
Can strongly modify XANES region. g .|

2 Uncorrected

< Fluorescence
Mitigation: run concentrated samples 8 Spectrum
in transmission, with electron yield. In § 05 - 1
some cases, it is possible to analytically =
correct for self absorbance (Corwin = . .
Booth’s talk thIS AM 6530 6540 6550 6560 6570 6580 6590

Energy (eV)

6600
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Il. Sample alignment and detectors:
Lytle detector

Good for relatively pure and moderately dilute
samples (~1,000 to 20,000 ppm range).

lonization chamber detector: no practical
count rate limit

Gases: Ar (< 10 KeV), Xe (10 — 15 keV), Kr
(>15 keV) — energies of emission lines!

Use x-ray filters in conjunction with Soller
slits to reduce elastic scattering from signal.

———

Beam -

Fhgpure 2. Saller SHt Position
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Dilute & chemically heterogeneous
samples

MCA Spectrum Yiew o =] |

MCA  View

MCA Spectrum Area Average

Ptin marine s
ferro-

manganese
crusts

200000 —

100000 —

T T
1] 1000 2000

4=476.160671  |[¥=-77509.135

Solid-state detectors (single Ge and Si crystals) provide energy
resolution of ca 250 eV FWHM and can resolve individual emission
peaks.

Disadvantage: count-rate limitation to ~280,000 counts/sec

Use high-pass x-ray filters (in this case, V or Al) to cut “background”
counts and thus allow for more Pt counts.
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Filter Qutput (m\V)
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Multichannel
analyzer

A Spectium Area Areerage

Il. Sample alignment and detectors:
Solid state detectors: basics

Windowed or
“SCA” counts,
< 600,000 cps




Il. Sample alignment and detectors:
Solid state detectors: basics
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When count rate approaches
~100,000 counts/sec, detector
becomes paralyzed during
some events = “deadtime’,
according to:

SCA = K+ICR*exp(-ICR*T,)

K = constant, T, = dead time.

Data can be quantitatively
corrected (hands on sessions)

SCA
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lll. Data acquisition

To be discussed during hands-on sessions:

* Setting up regions files - optimizing counting time, data range
* How to check data quality

» What will be the good data range?
 How many scans are enough?

Beam damage...
some samples are particularly
subject to photo-induced redox
changes. Mitigation: typically
cryogenic temperature for data
acquistion.

i Manceau et al. (2002).
:Reviews in Mineralogy and
Geochclamistry, Vlol 49

6540 6550 6560 6570 6580 eV




lll. Data acquisition
which beam line should | use?

SSRLB Line M
Model compounds (concentrated, e

compositionally simple):

81 Crystallagraphy
8-2 Crystallography

BL: 4-1, 4-3, 10-2

72 ¥-ray Seatiaring
7-3 Bio-XAS

N

%
2-1 PowdanThin Film Diffraction ~J
ight

Moderately dilute samples:
BL: 4-1, 4-3, 10-2

Highly dilute and/or chemically
heterogeneous samples:

BL: 7-3, 9-3, 11-2 /L

Low-energy XAS (~2.1 - ~6 keV): o K,
BL: 6-2, 4-3 e 1" 1 . \

High-energy XAS (~17 - 38 keV):
BL: 4-1, 7-3, 10-2, 11-2

Mat Sci: BL: 4-1, 4-3, 10-2
Environmental: BL: 4-1, 4-3, 10-2, 11-2
Biological: BL: 7-3, 9-3

Micro-XAS: BL 2-3
Grazing-incidence XAS: BL 11-2
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82 NEXAFSIPES Beniding Lisgnat
\. 9-3 Bio-XAS
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Quiz!

Connect the pictures to the data...

Bragg’s law:

n‘A = 2-d"sin(8)

Normalized Absorbance

Inflection Points:
Unconv: 17168.3
5ev: 171682

5eVBW

15eV:  17166.0
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