# Sources and Optics for XAS

## Apurva Mehta



Stanford Synchrotron Radiation Laboratory

### X-ray absorption Spectroscopy

Apurva Mehta



#### **Basic Experiment :**





### White Beam Energy Dispersive



#### Spectrum in Single Shot

#### Optics and Detector are not Available

LCLS/fast changes



# Two ways of collecting data





\_1ମସ୍ପ

# Two ways of collecting data

#### Monochromatic "Scanning" Measurement



Slow but doable



# Outline







• Wiggler vs. Undulator

- Energy Resolution
- "Glitches"
- Harmonic rejection

High Flux Density











-IFIZZ

## **Double Crystal Monochromator**







### Double Crystal Monochromator Increasing Energy Resolution









## Double Crystal Monochromator Increasing Energy Resolution



#### Use Narrower Io Slits



## Double Crystal Monochromator Increasing Energy Resolution



#### Use Narrower Mono Slits





#### **Use Collimated Beam**

### Double Crystal Monochromator Harmonics Rejection

Apurva Mehta







# Why Harmonics are a Problem



Required Measurement = Det<sub>F</sub>

Actual Measurement =  $\frac{Det_F + Det_H}{IO_F + IO_H}$ 

## Double Crystal Monochromator Harmonics Rejection

Apurva Mehta





angle (microrad)

detuning





Mn kedge





## A Cylindrical Mirror Bent into a Torous Focuses Vertically and Horizonally







## Monochromator "Glitches"













### Multiple Reflections – Phi Rotation



# Monochromator "Glitches"

Si(220) phi=0 ° 6-7 keV 10 Percentage Deviation -20 6.7 6.8 6 6.1 6.2 6.3 6.4 6.5 6.6 6.9 Energy (keV) Si(220) phi=90° 6-7 keV



Location Depends on Phi Orientation

- Severity depends on precise crystal orientation, difficult to predict
- Can not be eliminated, but sometimes can be made sufficiently narrow by slits adjustment that EXAFS are not affected.



## Preparation for an XAS Experiment

#### Absorbing Element

- ♦ K, L, M edge
- BL with the appropriate energy range

#### Energy Resolution

- Monochromator crystal order (e.g., 111, 220)
  Crystal Orientation phi cut "Glitch" spectrum.
- Close Slits
- Collimation of the beam prior to the Mono

#### Harmonic Rejection Strategy

- Mo angle adjustment for appropriate cut-off
- Detune the monochromator

#### Flux Density on the sample

- Select an insertion device source if available
- Adjust the M1 focus
- Lower Order Monochromator Crystal
- Open Slits









## Thanks

## Questions?



Stanford Synchrotron Radiation Laboratory



