

site occupancy determination by resonant elastic X-ray scattering

Yezhou Shi

May 2012

6th SSRL School on Synchrotron X-ray Scattering Techniques

name change: AXRD \rightarrow REXS

- diffraction measurements at various incident X-ray energies near an absorption edge
- different names for the same technique
 - anomalous X-ray diffraction
 - resonant anomalous X-ray diffraction
 - resonant elastic X-ray scattering (REXS)

1. motivation: why do we care?

2. technique: how does this work?

3. design experiments: what to consider?

importance of site occupancy

- materials property depends on site occupancies
- multiple sites, multiple cations/anions

spinel: A_2BO_4

perovskite: ABO₃

anti-site defects in A₂BO₄ spinel

electronic conductivity of spinels depends on structure *intrinsic* anti-site defects created by cross-substitution

attributes of an ideal technique

- **chemical selectivity**: distinguish elements with similar atomic numbers
- site selectivity:
 - site A vs. site B
 - substitution vs. interstitial
- o common techniques
 - extended X-ray absorption fine structures (EXAFS)
 - diffraction + Rietveld refinement
 - X-ray diffraction
 - neutron diffraction

1. motivation: why do we care?

2. technique: how does this work?

3. design experiments: what to consider?

REXS: chemical selectivity

o offers both chemical and site selectivities

$$I(E) \propto |F_{hkl}|^2 \qquad F_{hkl} = \sum_i x_i f_i(q, E) e^{2\pi i (hx + ky + lz)}$$

$$f = f_o(q) + f_1(E) + i f_2(E) \qquad \text{chemical selectivity}$$

REXS: site selectivity

o offers both chemical and site selectivities

REXS: multiple-energy scans

$$I(E) \propto \left| F_{hkl} \right|^2 \qquad F_{hkl} = \sum_i x_i f_i(q, E) \cdot e^{2\pi i (hx + ky + lz)}$$

Powder

Y. Shi et al. manuscript in preparation.

experiment vs. simulation: Cr₂MnO₄

measuring X-ray abs. spectroscopy

- powder samples: transmission XAS
- \circ thin films: fluorescence XAS

scaling: $\mu z \rightarrow \mu / \rho \rightarrow f_2$

measured μz

scale μ to theoretical μ/ρ

 \circ calculate f_2 from mass. abs. coeff.

$$\left(\frac{\mu}{\rho}\right)_{element} = \frac{2f_{2,element}r_e\lambda}{Am_u}$$

converting f_2 to f_1

- Kramers-Krönig transform (KKT): $f_1(E_o) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{E \cdot f_2(E)}{E^2 E^2} dE$
- near edge: resonant features
- away from edge: good agreement

experiment vs. simulation: Cr₂MnO₄

- evident differences: slope, step, and near-edge fine features
- $\circ I_{obs}(E) = C \cdot I_{calc}(E, x) \cdot A(E)$

correct for absorptions

absorptions in the experiment

- \circ size of the arrows symbolizes light intensity
- o filter attenuation: can be measured
- \circ beamline attenuation: need control samples

correct sample absorption

- o calculate absorption in the sample
- tricky because *both* resonant diffraction and strong absorption features are near the edge

Powder

Thin films

 $\frac{I_d}{I_o} \propto \frac{1 - \exp(-2\mu_{(E)}t/\sin\alpha_{(E)})}{2\mu_{(E)}}$ $\frac{I_d}{I_o} \propto \frac{1}{\mu_{(E)}}$

fit calculation to experiment

- good agreement between data and fit
- capture the near-edge features and the slope

1. motivation: why do we care?

2. technique: how does this work?

3. design experiments: what to consider?

practical considerations

- fraction site occupancy in multiple cation and/or multiple site
- energy compatibility with beamlines
- forms of samples
 - single phase with known composition
 - polycrystalline films or nanocrystals: very difficult
 - powder/bulk ceramic: OK
 - textured thin films/single crystals: the best
 - surfaces: good?
- \circ is this the appropriate technique?

powder sample: co-refinement of XRD and neutron data

- \circ material: Li doped Cr₂MnO₄ powder
- refine cation site occupancy: $(Cr_{1-x-y}Mn_xLi_y)_2^{Oh}[Mn_{1-z}Li_z]^{Td}O_4$
- o neutron diffraction done at Oak Ridge National Lab
- o complimentary XRD at SSRL

summary

2. sample abs.

3. design experiments

- sample form
- energy compatibility

acknowledgment

- Toney group at **SLAC**
- Salleo Group at •
- collaborators at
- beamline staff at (\bullet
- funding from •

Center for Inverse Design

thank you for the attention

