Warren Averbach analysis of XRD peak shapes:

Measuring disorder in soft organic materials

Rodrigo Noriega Applied Physics, Stanford University

Jonathan Rivnay, Alberto Salleo Materials Science, Stanford University Michael Toney Stanford Synchrotron Radiation Lightsource

SSRL X-ray scattering school | Spring 2012

How will organic semiconductors continue improving?

Organic Thin Film Transistors (OTFTs)

Applications: Complementary Logic Display Backplanes RFID Tags Sensors

Can we develop design rules to continue to improve performance/understanding?

Must understand and control morphology over vast range of length scales

Disorder is important for organic materials

TPS-Pn

PHHT # MW study

anneal study

PT(MEEMO (XX) ⊖ P(NDI2XY-T2)

OPOT DOOL O PEPDTET (XX)

() PTB1 CX3 ☆ BRL* XXI

P3HT 📩 MW study

• 001. FXX1

V DOL

COL = DOL 🖸 KXL 🚽 KXL

O COT-BIZ (XX)

SI-POPDITIBIT D03

Noriega (in preparation)

60 200 300

60 200 300

🔶 NJ M PETT 100 ft, 0 (X)

Paracrystalline parameter characterizes disorder

$$\Delta^2$$
 is the variance of interplanar spacing d: $\Delta^2 = \left\langle d^2 \right\rangle - \left\langle d \right\rangle^2$

Can now define the "paracrystallinity parameter", g: $g^2 = \Delta^2 / \langle d \rangle^2$

Using g to rank materials from crystalline to amorphous

Most of peak-broadening due to paracrystalline disorder (g)

Statistical deviation from mean lattice <u>spacing</u>

Paracrystalline disorder: a picture

Paracrystallinity in Silicon

Crystalline silicon

Is this the whole story?

Paracrystalline silicon

Amorphous silicon

Bragg's law recap

Constructive interference happens if $2dsin\theta=n\lambda$

In terms of the scattering vector: q=4 π sin θ/λ =Q_{rec}

X-ray scattering is sensitive to imperfections

Finite-size crystals have nonzero breadth diffraction peaks.

SSRL X-ray scattering school | Spring 2012

X-ray scattering is sensitive to imperfections

The width of a diffraction peak is increased when we add disorder to the lattice. More importantly, the peak width increases with diffraction order.

SSRL X-ray scattering school | Spring 2012

Slide 11

Warren and Averbach (JAP, 1950 and 1952) Prosa et al. (Macromolecules, 1999)

Measuring disorder quantitatively using X-ray diffraction

Prosa et al. (Macromolecules, 1999)

Warren-Averbach Graphical approach

Diffraction peaks can be represented by Fourier series

$$A_m(n) = A^S(n)A_m^e(n)A_m^g(n)$$

$$\ln A_m(n) = \ln N(n) / N_3 - 2\pi^2 m^2 n f(n)$$
$$f(n) = g^2 + n \langle e^2 \rangle$$

+ Extracting more information from peaks

- Prone to inaccuracies *Multiple steps Fitting lines to as few as 2-3 points Basing fits on previous fit results*

Fits converge quickly with more data

Data is not always that nice

SSRL X-ray scattering school | Spring 2012

Beam damage is something to be aware of

A model system for anisotropic disorder: PBTTT

PBTTT:

IS91

 $C_{14}H_{29}$

SSRL X-ray scattering school | Spring 2012

Slide 18

Chabinyc (JACS, 2007), Wang (Adv. Mat., 2010) Delongchamp (Adv. Mat., 2011)

PBTTT appears very ordered in the direction perpendicular to the substrate

SSRL X-ray scattering school | Spring 2012

SSRL X-ray scattering school | Spring 2012

g: 0% 1%

Slide 20

10%

Noriega (in preparation)

Shortcuts are sometimes OK, sometimes not

SSRL X-ray scattering school | Spring 2012

Molecular-weight dependence of disorder is related to transport in P3HT

SSRL X-ray scattering school | Spring 2012

Slide 22

Noriega (in preparation)

Potential Sources of Disorder

Extrinsic

<u>Impurities</u>

catalysts, degradation impurities, additives

Polydispersity

broad distribution of chain lengths

Side chaininduced

Alkyl chain (or side chain) <u>disorder</u>

Even for perfectly RR chains, side chains may cause perturbation in local packing

Intrinsic

Chain entanglement dependent

Torsion from entanglement

Stacking

Faults

Poor <u>lateral stacking</u>

Can cause repulsion and vary π-stacking

Paracrystalline disorder creates electronic traps

g=1%

<i>g</i> =5%				

Modeling inter-chain disorder in PBTTT pi-stacks:

Localization length vs. energy

Tail states are highly localized, but for higher disorder, even states within the band become more localized

g=10%

\$	ϕ	ϕ	ϕ	Ø.	\$	\$	ϕ	ϕ	Þ	
P	Q.	P	P	Þ	P	Þ	Þ	Φ	Þ	
<u></u>	P	9	₽	P	P	£) ¶) P	(T)
Å	Ľ	Ŷ	¥.	Ľ	Ľ	Ľ	Ľ	Ľ	2	כ
Å	X	Å	A	L	X	X	X	Ľ	X	`
Å	Т	6	2	F	5	Ŧ	5	6	7)
é	5	6	£	ŏČ	ŏ	ÒČ	ŏ	Ť	ÒČ)
¢) 🗘	¢	¢	⊃¢	¢¢	¢	$\rangle \diamond$)¢	Эģ	D
٢	٢	٩	Ó	٢	()	9	Ż	Í.	Ì	
1	÷.	i.	i.	i.	÷.	÷.	÷.	i.	i.	
		- A -	1	1		1	1	1	1	

Large disorder causes localization (traps) and creates deep tail states.

Macromolecules can span transport regimes

Grain boundaries dominate performance

Disorder within crystallites prevalent; complicates analysis

Conclusions – round 1

• Synchrotron-based XRD allows to quantify lattice disorder.

• Tradeoff between good statistics and beam damage.

• Every little thing counts toward making your life easier when it comes to data analysis: align the film, use the right scattering geometry, etc.

Conclusions – round 2

- B91
- Disorder at all length-scales affect transport in organic semiconductors.
- Lattice disorder can be described as a continuous scale, it can be quantified.

• Most (all until now) high Mw, **high mobility** polymers are disordered in the π - π stacking direction.

Acknowledgements

Center for Advanced Molecular Photovoltaics (CAMP), funded by KAUST

Collaborators:

Stanford Synchrotron <u>Radiation Lightsource</u> Mike Toney Stefan Mannsfeld (WxDiff)

Palo Alto Research Center John Northrup

Stanford Global Climate and Energy Program

<u>Polyera Corp.</u> Antonio Facchetti

and Technology Joe Kline

Nat. Inst. of Standards

Imperial College

Martin Heeney Jain McCulloch

Natalie Stingelin

Imperial College London

<u>Northwestern Univ.</u> Tobin Marks

SSRL X-ray scattering school | Spring 2012