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Warren Averbach analysis of XRD peak 
shapes:

Measuring disorder in soft organic materials
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How will organic semiconductors continue improving?

PolyIC

Applications:

Complementary Logic

Display Backplanes

RFID Tags

Sensors

Organic Thin Film 
Transistors (OTFTs)

Can we develop design rules to continue to improve performance/understanding?
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Pentacenes
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Must understand and control morphology 
over vast range of length scales

Molecular-scale 
packing

Local defects, 
lattice disorder

Crystalline grains 
and domains

Domain orientation Device-scale 
morphology

Molecular-scale 
packing

Nano-scale 
order

Grain size 
distribution

Short-range 
phase 
segregation

Long-range 
phase 
segregation

molecule

defect

domain boundary

grain boundary

grain
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defect crystallite
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Rivnay (Chem. Rev., submitted)
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Disorder is important for organic materials 
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Top performers are disordered

Noriega (in preparation)

HOMO=-4.99 eV

HOMO=-5.25 eV

Crystalline-amorphous interface
Crystalline Amorphous

It’s easier to melt disordered crystals
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Paracrystalline parameter characterizes disorder

∆2 is the variance of interplanar spacing d:    

Can now define the “paracrystallinity parameter”, g:

∆2 = d 2 − d
2

g2 = ∆2 / d
2

P(d)

d<d>

d

P(d)

d<d>
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Using g to rank materials 
from crystalline to amorphous
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Hindeleh (J. of. Physics C, 1988)
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Paracrystalline disorder: a picture

g=1% g=5% g=10% g=15%
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Paracrystallinity in Silicon

Crystalline silicon Amorphous silicon

Is this the whole story?

Treacy (Science, 2012)

Paracrystalline silicon
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Bragg’s law recap

Constructive interference happens if
2dsinθ=nλ

λ

d

θ

In terms of the scattering vector:
q=4πsinθ/λ=Qrec
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X-ray scattering is sensitive to imperfections

Finite-size crystals have nonzero breadth diffraction peaks.

Warren and Averbach (JAP, 1950 and 1952)

Observed intensity

Observed intensity
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X-ray scattering is sensitive to imperfections

The width of a diffraction peak is increased when we add disorder to the lattice.
More importantly, the peak width increases with diffraction order.

Observed intensity

Different 
position means 
waves pick up 

extra phase

Observed intensity

Warren and Averbach (JAP, 1950 and 1952) 

Prosa et al. (Macromolecules, 1999)
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Measuring disorder quantitatively 
using X-ray diffraction

Effect of 

Cumulative Disorder

Increasing
disorder200nm

20nm

5nm

(no disorder)

Effect of Grain Size

paracrystalline disorderLattice parameter 
fluctuation

erms

Grain size
M

g

Warren and Averbach (JAP, 1950 and 1952) 

Prosa et al. (Macromolecules, 1999)
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Warren-Averbach Graphical approach
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Diffraction peaks can be represented by Fourier series

Warren (1951)

T.J. Prosa, Macromolecules (1999)

+ Extracting more information from peaks

- Prone to inaccuracies

Multiple steps

Fitting lines to as few as 2-3 points

Basing fits on previous fit results
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Line-shape analysis applied to Polyera N2200
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Fits converge quickly with more data
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Data is not always that nice
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Beam damage is something to be aware of
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A model system for anisotropic disorder: PBTTT

Chabinyc (JACS, 2007), Wang (Adv. Mat., 2010)

Delongchamp (Adv. Mat., 2011)
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PBTTT appears very ordered 
in the direction perpendicular to the substrate

glamellar~2.5%

Delongchamp (Adv. Mat., 2011)

gπ-π~7.3%
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M:
g:

erms:

47 ± 7 nm
0.9 ± 0.6 %
≈ 0 %

High performing materials vary in paracrystallinity

0%    1%                                                        10%g:

In plane
[100] direction

In plane
[010], π-stacking

S
SS

S

H29C14

H29C14 n

Si

Si

TIPS-Pentacene PBTTT

M:
g:

erms:

34 ± 7 nm
2.6 ± 1.4 %
1.3 ± 0.6 %

Small Molecule Polymer

µFET≈0.5-5 cm2/Vs
µFET≈0.1-1 cm2/Vs

M:
g:

erms:

55 ± 8 nm
≈ 0%
≈ 0 %

Out of plane
[001] direction

Out of plane
[100], lamellar-stacking

M:
g:

erms:

n/a
7.3 ± 0.7 %
0.9 ± 0.6 %

Noriega (in preparation)
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Shortcuts are sometimes OK, sometimes not

1.5 2.0 2.5 3.0 3.5

0.01

0.1

N
o
rm
a
liz
e
d
 in
te
n
si
ty
 (
a
rb
. 
u
.)

Q (A
-1
)

3.10 3.15 3.20 3.25 3.30 3.35

700

800

900

1000

1100

1200

1300

1400

1500

1600

 Scan 1 (after a long scan)
 Scan 2 (fresh spot)
 Scan 3 (fresh spot)

D
e
t

Q

gestimate~4.7% gfull~2.7±0.6%

Mfull~18 nm
g =

∆q
2πqo

1st and 2nd order π-π
diffraction on a P3HT 
oligomer (13 monomers)



Slide 22SSRL X-ray scattering school | Spring 2012

Molecular-weight dependence of disorder 
is related to transport in P3HT
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Noriega (in preparation)
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Potential Sources of Disorder

Extrinsic

Impurities
catalysts, degradation 
impurities, additives

Polydispersity
broad distribution of 

chain lengths

Regioregularity
defects

Intrinsic
Side chain-

induced

Alkyl chain 
(or side chain) 

disorder
Even for perfectly RR 

chains, side chains may 
cause perturbation in local 

packing

Chain entanglement 
dependent

Poor 
lateral stacking
Can cause repulsion 
and vary π-stacking

Stacking
Faults

Torsion from entanglement

McMahon (J. Phys. Chem., 2011), Xie (PRB, 2011)
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Paracrystalline disorder creates electronic traps

Modeling inter-chain disorder in PBTTT pi-stacks:

g=1%

g=5%

g=10%

Localization length vs. energy

Tail states are highly localized, but for higher disorder, 
even states within the band become more localized

Large disorder causes localization (traps) and creates 
deep tail states.

Noriega (in preparation)
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0%    1%                                                        10%g:

Small Molecules Polymers

Grain boundaries 
dominate performance

Disorder within crystallites prevalent;
complicates analysis

Macromolecules can span transport regimes 

Low MW High MW

Kline (Macromolecules, 2005)
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Conclusions – round 1

• Synchrotron-based XRD allows to quantify lattice disorder. 

• Tradeoff between good statistics and beam damage.

• Every little thing counts toward making your life easier when it comes to data 

analysis: align the film, use the right scattering geometry, etc.
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Conclusions – round 2

• Disorder at all length-scales affect transport in organic semiconductors.

• Lattice disorder can be described as a continuous scale, it can be quantified.

• Most (all until now) high Mw, high mobility polymers are disordered in the π-π
stacking direction.

0%    1%                                                        10%g:
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