

Introduction to Synchrotron X-ray Scattering Techniques

Mike Toney, SSRL Materials Sciences Division

- 1. Why do x-ray scattering?
- 2. Basics of an x-ray scattering experiment
- 3. SSRL scattering beamlines
- 4. Some examples
 - SAXS: porous films
 - Powder: Pd nanoparticles
 - Textured films: ZnO nanostructures
- 5. Summary

Why do SR X-ray scattering?

- Materials properties are caused or affected by their physical structure and morphology
- Improve your materials by understanding the structure.

- Phase identification & quantify
- Where are the atoms: Atomic or molecular arrangement, crystal & surface structure
- Strain, lattice parameters (unit cell size)
- Grain/crystallite size (diffraction)
- Pore/particle size (SAXS)
- Other defects & disorder (faults, positional disorder)
- Crystallite orientation or texture

Beamline	2-1	7-2 & 10-2	11-3 <mark>1-5</mark>
Detector	Point	(mostly) Point	Area
Advantages	High resolution Accurate peak position and shape Weak peaks Variable energy Reflectivity	High resolution Accurate peak position and shape Weak peaks Variable energy	Fast measurement Collect (nearly) whole pattern
Dis- advantages	Slow Only 2 axes of motion	Slow Can be difficult to find textured peaks Complicated	Fixed wavelength Low resolution Peak shape and position inaccurate Weak peaks difficult
Used for	Powders Phase determination Reflectivity θ-2θ Anomalous diffraction	Single crystals Grazing-incidence Anomalous diffraction Surface studies Anomalous diffraction	Texture Real time experiments Polycrystalline, small grains Thin films

Area detector (11-3)

 2θ = scattering angle Q = $(4\pi/\lambda) \sin \theta$

Advantages

- ➢ Fast measurement
- Collect whole pattern

Disadvantages

- ➢ Fixed wavelength
- ➤ Low resolution
- ≻Peak shape & position inaccurate
- ➤ Weak peaks difficult

Used for

- Texture (crystallite orientation)
- Real time experiments (electrochemistry, stress-strain)
- Polycrystalline, small grains
- ➤ Thin films

Area detector (1-5) - clone of 11-3

Pil Sung Jo, graduate student in the Materials Sciences department of Stanford, setting up diffraction experiment on organic semiconductors

Used for

- Texture (crystallite orientation)
- ≻ Thin films

Advantages

- ➢ Fast measurement
- ➢ Collect whole pattern

Disadvantages

- ≻ Low resolution
- ➤ inaccurate peak shape /position
- ➤ Weak peaks difficult
- Goal: Easy, seamless access for students from universities when research requires higher intensity & resolution than laboratory sources.
- Phase I: Reconfigured bending magnet for thin film x-ray diffraction. Stanford Nanocharacterization Laboratory will pilot access

Point detector (2-1)

2θ = scattering angle $Q = (4\pi/\lambda) \sin \theta$

Advantages

- ➢ High resolution
- ► Accurate peak position & shape
- ➤ Weak peaks
- ➤ Variable energy
- ➢ Reflectivity
- Disadvantages
- > Slow
- > Only 2 degrees of motion (θ , 2 θ)

Used for

- > Powders
- Phase determination
- > Reflectivity
- Anomalous diffraction
- $> \theta$ -2 θ measurements

Point detector (7-2/10-2)

 2θ = scattering angle $Q = (4\pi/\lambda) \sin \theta$

Advantages

- ➢ High resolution
- Accurate peak position & shape
- ➤ Weak peaks
- ➤ Variable energy
- \succ 4 degrees of motion (θ, 2θ, χ, φ)

Disadvantages

- ≻ Slow
- ➤ Complicated
- ➤ Can be difficult to find peaks

Used for

- Single crystals
- ➤ Grazing-incidence
- Anomalous diffraction
- \succ Thin films
- Surface studies

Types of scattering experiments

- Small Angle X-ray Scattering (SAXS)
 - probes structures 1-100 nm
- Powder Diffraction, including in-situ
 - random or isotropic; nanoparticles
 - poor crystalline order
- Thin Films: random, textured, epitaxial
 - wide variety
- Surface Scattering/monolayers
 - atomic structure at surface or interface

Lengths Accessed by Probes

Summary: SR Scattering

SR Scattering:

- Q is important variable: measure I(Q)
- \bullet choose Q to match length scale
- variety of materials

What can we learn:

- Phase identification & quantify
- Where are the atoms: crystal & surface structure
- Strain, lattice parameters
- Grain/crystallite size
- Pore/particle size
- Other defects & disorder
- Crystallite orientation or texture

Small Angle Scattering

• Scattering from 1-100 nm density inhomogeneities

 $\mathbf{Q} = \mathbf{k'} - \mathbf{k}$

 $|\mathbf{Q}| = (4\pi/\lambda)\sin\theta$

SSR

Small Angle Scattering

Scattering from density inhomogeneities with sizes 1-100 nm

- nanoparticles (catalysts, biooxides, geo-oxides)
- nanoporous materials
- co-polymers
- dendimers
- supramolecular assemblies
- micelles
- colloids
- metallic glasses

Small Angle Scattering

SSRL SSRL

Hexagonal packed cylinders

Isolated particles or pores with diameter D

Need large Q range:
 1/D≤Q≤10/D

Example 1: Nanoporous Films

IBM Elbert Huang Jonathan Hedstrom Ho-Cheol Kim Teddie Magbitang Robert Miller Willi Volksen

Matrix: Methyl Silsesquioxane (MSSQ), CH₃SiO_{1.5}

Porogen (thermally labile polymer): copolymer poly(methyl methacrylate-codimethylaminoethyl methacrylate) or P(MMAco-DMAEMA)

1. Spin coat MSSQ/Porogen solution

Spin Coat

2. Heat to 450°C, at 5°C/min under argon

MSSQ crosslinks at 200°C Poragen fully degrades at 400°C

3. Cool to room temperature

- > Huang et al, Appl. Phys. Lett. 81, 2232 (2002)
- > Huang et al., Chem. Mater. 14, 3676 (2002)
- > Magbitang, Adv. Materials. 17, 1031 (2005)

Nanoporous Films: SAXS Results

Huang et al, Appl. Phys. Lett. 81, 2232 (2002)

Find:

- reasonably small pores (good)
- broad distribution of pore sizes (bad)
- size increases with loading => agglomeration (bad)

Nanoporous Film Morphology

Goal: obtain representative real space picture (correct size scale and extent of interconnection)

Approximations:

- morphology is "disordered" or random with no preferred direction
- morphology described by cosine waves:
 - with random phase and direction
 non-random distribution of wavelengths

(from SAXS)

 10^{6} 105 Intensity 10^{3} 10^{2} 10 0.01 0.02 0.5 0.2

SSR

- Cahn, J.W., J. Chem. Phys. 42, 93 (1965).
- Berk, N.F. Phys. Rev. Lett. 58, 2718 (1987) & Phys. Rev. A 44, 5069 (1991).
- Jinnai, H., et al., *Phys. Rev. E* 61, 6773 (2000).
- Teubner, M., Europhys. Lett. 14, 403 (1991).
- Hedstrom et al., Langmuir 20, 1535 (2004)

Summary: SAXS

- Isolated Particles/Pores (not ordered)
 ✓ Obtain average size & particle/pore size distribution (need large Q range)
- (More) Ordered Structures
 ✓ particle/pore spacing and morphology
- Dense Network of Pores/Particles
 - ✓ Obtain representative morphology
 - Good for interconnected & bicontinuous morphologies

John Pople, up next!

Example 2: Nanoparticles

Motivation:

- Pd absorbs hydrogen at an atomic level
- Clusters behave differently to bulk
- Pd clusters:
 - size dependence
 - surface/volume ratio

TE WHARE WANANGA O WAITAHA

Nanoparticles: X-ray diffraction

Nanoparticles: X-ray diffraction

In-situ Experiments – more later APS sector 12

Ingham et al., Phys. Rev. B 78 245408 (2008).

Summary: Nanoparticles

This work:

- Observe peaks corresponding to fcc Pd
- Lattice expansion upon addition of hydrogen
- Dependence on cluster size

Powder diffraction:

- Phase identification
- Structure determination
- Strain
- Crystallite size
- Defects
- In situ measurements
- Transmission and reflection geometries

Apurva, Linda, Marc, Misra, Yezhou: this afternoon

Example 3: ZnO

Motivation:

- •ZnO exhibits a wide variety of nanostructures
- •Electrochemical processing has many advantages
- •Experimental parameters determine morphology

How does crystallography affect the growth of the nanostructures?

Imperial College London

Thin Film Diffraction

ZnO: experiments

Ex situ:

100

ZnO: Summary

Summary:

- •Texture increases with deposition time
- •Nanostructures are oriented along 002 direction

•Films deposited at less negative electrochemical potentials have poorer epitaxy

Thin films and texture:

- Surfaces, interfaces
- Structure, strain
- Orientation
- Crystallite size in-plane
 and out-of-plane

Arturas, Chad, Stefan, Chris, this afternoon

Speaken Marg Shots

- Typical SR x-ray scattering experiment & some examples: porous films, nanoparticles, textured films
- To be covered in this workshop:
 - Films: random, textured, epitaxial
 - SAXS
 - Powder
 - Poorly ordered
 - Surfaces

- **S**SRL
- B Warren, "X-ray Diffraction", Dover (1990): \$7.58 & eligible for FREE Super Saver Shipping on
 amazon.com
- BD Cullity & SR Stock, "X-ray Diffraction", Prentice Hall (2001): \$159.16.
- J Als-Nielsen & D McMorrow, "Elements of Modern X-ray Physics", Wiley (2001): \$92.89.

More Bibliography

- M. Tolan, "X-ray Scattering from Soft-Matter: Materials Science and Basic Research", Springer (1998).
- RL Snyder, K. Fiala & HJ Bunge, Eds., "Defect and Microstructure Analysis by Diffraction", Oxford (1999).
- V Holy, U Pietsch, T Baumbach, "High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures", Springer-Verlag, (2004)
- O Glatter, "Small Angle X-Ray Scattering", Academic (1982).
- "Modern Aspects of Small Angle X-Ray Scattering", H. Brumberger (Editor), Springer (1994).
- Int. Union of Crystallography: Links to everything crystallographic. www.iucr.org . See : www.iucr.org/cww-top/edu.index.html and also Teaching and Education in Crystallography: www.minerals.csiro.au/mirror/w3vlc/edu.index.html.
- Structural data for thousands of minerals: database.iem.ac.ru/mincryst/
- Lawrence Berkeley: X-ray interactions with matter, data & calculations wwwcxro.lbl.gov/optical_constants/
- International Centre for Diffraction Data purveyors of the Powder Diffraction File (PDF) www.icdd.com

