Thin Film Scattering: Epitaxial Layers

6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application

May 29 - 31, 2012

- Thin films. Epitaxial thin films
- What basic information we can obtain from x-ray diffraction
- Reciprocal space and epitaxial thin films
- Scan directions reciprocal vs. real space scenarios
- Mismatch, strain, mosaicity, thickness
- How to choose right scans for your measurements
- Mosaicity vs. lateral correlation length
- SiGe(001) layers on Si(001) example
- Why we need channel analyzer
- What can we learn from reciprocal space maps
- $SrRuO_3$ and $La_{0.67}Sr_{0.33}MnO_3$ films example
- Summary

What is thin film/layer?

Material so thin that its characteristics are dominated primarily by two dimensional effects and are mostly different than its bulk properties *Source: semiconductorglossary.com*

Material which dimension in the out-of-plane direction is much smaller than in the in-plane direction.

A thin layer of something on a surface

Source: encarta.msn.com

Epitaxial Layer

A single crystal layer that has been deposited or grown on a crystalline substrate having the same structural arrangement. *Source: photonics.com*

A crystalline layer of a particular orientation on top of another crystal, where the orientation is determined by the underlying crystal.

<u>Homoepitaxial layer</u> the layer and substrate are the same material and possess the same lattice parameters.

<u>Heteroepitaxial layer</u> the layer material is different than the substrate and usually has different lattice parameters.

Thin films structural types

Structure Type	Definition
Perfect epitaxial	Single crystal in perfect registry with the substrate that is also perfect.
Nearly perfect epitaxial	Single crystal in nearly perfect registry with the substrate that is also nearly perfect.
Textured epitaxial	Layer orientation is close to registry with the substrate in both in- plane and out-of-plane directions. Layer consists of mosaic blocks.
Textured polycrystalline	Crystalline grains are preferentially oriented out-of-plane but random in-plane. Grain size distribution.
Perfect polycrystalline	Randomly oriented crystallites similar in size and shape.
Amorphous	Strong interatomic bonds but no long range order.

Thin films structural properties

What we want to know about thin films?

- Crystalline state of the layers:
 - Epitaxial (coherent with the substrate, relaxed)
 - Polycrystalline (random orientation, preferred orientation)
 - Amorphous
- Crystalline quality
- Strain state (fully or partially strained, fully relaxed)
- Defect structure
- Chemical composition
- Thickness
- Surface and/or interface roughness

Overview of structural parameters that characterize various thin films

	Thickness	Composition	Relaxation	Distortion	Crystalline size	Orientation	Defects
Perfect epitaxy	×	×				×	
Nearly perfect epitaxy	×	×	?	?	?	×	×
Textured epitaxy	×	×	×	×	×	×	×
Textured polycrystalline	×	×	?	×	×	×	?
Perfect polycrystalline	×	×		×	×		?
Amorphous	×	×					

Tetragonal Distortion

•	۰	۰	۰	۰	•	•
0	•	•	•	•	۰	•
•	۰	۰	۰	۰	۰	•
•	•	•	•	•	•	•

Single crystal

Polycrystalline Textured

Polycrystalline Random

Relaxed Layer

Perfect Layers: Relaxed and Strained

Reciprocal space – Ewald sphere

$$\left|\mathbf{OC}\right| = \frac{1}{\lambda} \sin \theta = \frac{1}{2} \left| \mathbf{d}_{hkl}^* \right| = \frac{1}{2d_{hkl}} \rightarrow \lambda = 2d_{hkl} \sin \theta$$

Reciprocal space – Scattering vector

Scan Directions

Scan Directions

Symmetrical Scan

Grazing Incidence Diffraction

Real RLP shapes

Mismatch

True lattice mismatch is: $m = \frac{a_L^R - a_S}{a_S}$ For cubic (001) oriented material the experimentally 100Kmeasured normal component of the mismatch: $a_L - a_S$ $m = \frac{a_L^R - a_S}{a_S}$

counts/s 10M

$$m_{\perp} = \frac{a_{\perp} - a_{S}}{a_{S}} = \left(\frac{\Delta a}{a}\right)_{\perp} = \left(\frac{\Delta d}{d}\right) = \frac{\sin\theta_{S} - \sin(\theta_{S} + \Delta\theta)}{\sin(\theta_{S} + \Delta\theta)}$$

The experimental mismatch, m_{\perp} , can be related to the mismatch through the equation:

$$m = \frac{a_L^R - a_S}{a_S} = \frac{1 - \nu}{1 + \nu} m_\perp$$

where v is Poisson ratio. For Si, v = 0.28

The composition of the $A_{1-x}B_x$ alloy can be calculated from Vegard's law:

$$a_L^R(x) = (1-x)a_A + xa_B$$

$$x = m \frac{a_A}{a_B - a_A}$$

Layer Thickness

Interference fringes observed in the scattering pattern, due to different optical paths of the xrays, are related to the thickness of the layer:

$$t = \frac{(n_1 - n_2)\lambda}{2(\sin \omega_1 - \sin \omega_2)}$$

Substrate Layer Separation

S-peak:		L-peak:		Separation	1:
Omega(°)	34.5649	Omega(°)	33.9748	Omega(°)	0.59017
2Theta(°)	69.1298	2Theta(°)	67.9495	2Theta(°)	1.18034

Layer Thickness

Mean fringe period (°): 0.09368 Mean thickness (um): 0.113 \pm 0.003

2Theta/Omega (°)	Fringe Period (°)	Thickness (um)
66.22698 - 66.32140	0.09442	0.111637
66.32140 - 66.41430	0.09290	0.113528
66.41430 - 66.50568	0.09138	0.115481
66.50568 - 66.59858	0.09290	0.113648
66.59858 - 66.69300	0.09442	0.111878
66.69300 - 66.78327	0.09027	0.117079

Symmetrical scan

 ω -2 θ direction

(000)

Relaxed SiGe on Si(001)

Relaxed SiGe on Si(001)

(004) RLM

Si(004)

SiGe(004)

Relaxation

The relaxation is defined as:

$$R = \frac{a_L - a_S}{a_L^R - a_S} \times 100$$

To separate the layer tilt from the true splitting we can make grazing incidence and grazing exit measurements:

- The effect of tilt on the peak splitting is reversed if the specimen is rotated by 180° about its surface normal.
- The splitting due to mismatch will not be affected by such rotation

$$\Delta heta_{_{gi}} = \Delta heta + \Delta arphi$$
 – grazing incidence

$$\Delta \theta_{_{ge}} = \Delta \theta - \Delta \varphi$$
 – grazing exit

Analysis of Laterally Inhomogeneous Layers

The Mosaic Spread and Lateral Correlation Length functionality derives information from the shape of a layer peak in a diffraction space map recorded using an asymmetrical reflection

Superlattices and Multilayers

Angle (arc seconds)

Superlattices and Multilayers

Structure of SrRuO₃

Samples:

SrRuO₃ on SrTiO₃ and DyScO₃

La_{0.67}Sr_{0.33}MnO₃ on NdGaO₃, LSAT, SrTiO₃ and DyScO₃

Symmetrical scans along STO[001] direction

Finite thickness fringes around the Bragg peak indicate very good structural quality throughout the film

X-ray diffraction scan types for [110] growth

Orthorhombic to Tetragonal Transition

Appl. Phys. Lett. 91, 071907 (2007)

O – T Structural Transition, (221) reflection

(221) Peak							
Orthorhombic	Present						
Tetragonal	Absent						

Transition Orthorhombic to Tetragonal $\sim 310\ ^\circ \mathrm{C}$

Appl. Phys. Lett. 91, 071907 (2007)

Appl. Phys. Lett. 95, 152508 (2009)

Summary

- Reciprocal space for epitaxial thin films is very rich.
- Shape and positions of reciprocal lattice points with respect to the substrate reveal information about:
 - Mismatch
 - Strain state
 - Relaxation
 - Mosaicity
 - Composition
 - Thickness
- Diffractometer instrumental resolution has to be understood before measurements are performed.

						И
_						И
_						И
—						И
						r.

Single crystal

Preferred orientation

Polycrystalline