Bulk Structure Characterization

Apurva Mehta Linda Lim

What do diffraction peaks tell us?

Structure Refinement Intro

Refinement Details - Linda

X-ray lens with resolution better than ~10nm don't exist

X-ray Scattering/diffraction is about probing the structure without a lens

□ FT (large) ~ 1/large → small

large structures in real space \rightarrow small in reciprocal space

□ FT (periodic fn) ~ periodic

Reciprocal and space have the same point group symmetry

FT (real space) \rightarrow reciprocal space: FT (rec. space) \rightarrow image of real space Convolution Theorem:

FT (a multiply b) = FT (a) conv FT (b)

FT (a conv b) = FT (a) mult FT (b)

Fourier

See

Sample = $S \times P * M$

$$=$$
 FT (S x P * M) x FT (S x P * M

I (Q) = FT(sample) x FT(sample)

	•	•	•	•	•	٠
\leftrightarrow	•	•	•	•	•	•
	•	•	•	•	•	•
	•	٠	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•

$FT(S \times P) = FT(S) \times FT(P)$

SLAC NATIONAL ACCELERATOR LABORATORY

What does a diffraction pattern tell us?

Peak Shape & Width:

- crystallite size
- Strain gradient

Peak Positions:

- Phase identification
- Lattice symmetry
- Lattice strain

Peak Intensity:

- Structure solution
- Crystallite orientation

Bulk Structure via powder diffraction

Peak Shape & Width: crystallite size Strain gradient Peak Positions: Phase identification Lattice symmetry Lattice strain

Peak Intensity:

- Structure solution
- Crystallite orientation

Powder Pattern

□ Loss of angular information

Not a problem as peak position = fn(a, b & α)

Peak Overlap :: A problem

- High Resolution Synchrotron measurements help
- But can be useful for precise lattice parameter measurements

Bulk Structure via powder diffraction

Peak Shape & Width: crystallite size Strain gradient Peak Positions: Phase identification Lattice symmetry Lattice strain Peak Intensity:

- Structure solution
- Crystallite orientation

- Phase/Structure must be guessed
 - And then refined.
- □ How to guess?
 - Heavy atom substitution, SAD or MAD
 - Structure with one stronge scatterer e.g. U in Phosphates matrix -
 - Similarity to homologous compounds, e.g. NaCl
 KCl

Patterson function or pair distribution analysis.
 M. Michel

Structure Solution

NATIONAL ACCELERATOR LABORATORY

- Single Crystal
 - Protein Structure
 - Sample with heavy Z problems Due to
 - Absorption/extinction effects
 - Mostly used in Resonance mode
 - □ Site specific valence
 - □ Orbital ordering.

Powder

- Due to small crystallite size kinematic equations valid
- Many materials can not be readily prepared in singlecrystal form: their structures obtained via synchrotron powder diffraction
 - Peak overlap a problem high resolution setup helps
- Much lower intensity loss on super lattice peaks from small symmetry breaks. (Fourier difference helps)

SLAC

Empirical

- Voigt function modified for axial divergence (Finger, Jephcoat, Cox)
 - Refinable parameters for crystallite size, strain gradient, etc...

From Fundamental Principles

Background

SLAC

Inverse Modeling Method 2

Rietveld Method

- More precise
- Yields Statistically reliable uncertainties

□ Fourier Method

- Picture of the real space
- Shows "missing" atoms, broken symmetry, positional disorder
- Should iterate between Rietveld and Fourier.
 - Be skeptical about the Fourier picture if Rietveld refinement does not significantly improve the fit with the "new" model.

Procedure for Refinement/Inverse Modeling

Measure peak positions:

- Obtain lattice symmetry and point group
 - □ Guess the space group.
 - Use all and compare via F-factor analysis

- Guess the motif and its placement
 - Phases for each hkl
- Measure the peak widths
 - Use an appropriate profile shape function
- Construct a full diff. pattern and compare with measurements

Collect data on Calibrant under the same conditions

- Obtain accurate wavelength and diffractometer misalignment parameters
- Obtain the initial values for the profile function (instrumental only parameters)
- Refine polarization factor

Tells of other misalignment and problems

Need for High Q

Many more reflections at higher Q.

Therefore, most of the structural information is at higher Q

Reitveld Method Fourier Difference Method

