

More Thin Film X-ray Scattering and X-ray Reflectivity Mike Toney, SSRL

- 1. Introduction (real space reciprocal space)
- 2. Polycrystalline film (no texture) RuPt
- 3. Textured film: MnPt
- 4. X-ray Reflectivity
- 5. Summary
 - how do you get diffraction data from thin films
 - how to choose what to do (what beam line & scans)
 - what do you learn

Real and Reciprocal Space

Real and Reciprocal Space

differences in extent of texture

Thin Film Scattering

free ferromagnet seed laver

What do you do?

300 nm SiO₂

Si

- what beam line? (2-1, 7-2, 11-3)
 - area vs point detector; flux; energy
- what scans? ("where" in reciprocal space)
 - what do you want to learn:
 - > phase identification
 - ➤ lattice parameters
 - ➤ defects
 - ➤ texture
 - ➤ crystallite size
 - ➤ atomic structure

Thin Film Scattering

Two ways: Area detector & Point detector

RuPt Thin Films

Direct Methanol Fuel Cell (DMFC)

- low operating temperature & high energy density
- low power applications (cell phones, PCs,)

RuPt alloys used as catalysts for DMFCs

- as nanoparticles, but also films
- catalytic activity of RuPt depends on composition and structure (hcp or fcc)

Hamnet, Catalysis Today **38**, 445 (1997) Park et al., J. Phys. Chem. B **106**, 1735 (2002)

DMFCCs Prototype Laptop Cartridge

3HLO

anode: $CH_3OH + H_2O \Longrightarrow CO_2 + 6H^+ + 6e^$ cathode: $3/2O_2 + 6H^+ + 6e^- \Longrightarrow 3H_2O$ sum: $CH_3OH + 3/2O_2 \Longrightarrow CO_2 + 2H_2O$

RuPt Thin Films

Goal: Correlate crystal structure of RuPt alloys to catalytic activity

Pt is fcc; Ru is hcp fcc->hcp transition as Ru increases

thin films of RuPt rf sputtered 13 nm thick

- T-W Kim, S-J Park, Gwangju Institute of Science & Technology, South Korea
- K-W Park, Y-E Sung, Seoul National University, South Korea
- Lindsay Jones, (SULI Internship)

Polycrystalline (powder) film

"Powder": random orientation of many small crystals (crystallites)

RuPt Thin Films

RuPt Thin Films

RuPt Thin Films: diffraction

Increasing Ru => transition from fcc to mixed fcc/hcp to hcp

T-W. Kim et al., J. Phys. Chem. B 109, 12845 (2005)

RuPt Thin Films

Thin Film Phase Diagram

Thin film different from bulk, due to sputter deposition Kinetics do not allow equilibrium

RuPt Thin Films

- composition dependent activity similar to pure fcc alloys
- hcp RuPt does not adversely affect activity
- may be manifestation of surface properties (similarity of fcc(111) and hcp(002)

RuPt Films: Lattice Parameters

• Accurately determine lattice parameters

• Cannot use bulk alloy lattice parameters to get composition

Summary: polycrystalline

RuPt films:

- > phase identification (hcp, fcc)
- ➢ lattice parameters (strain)
- \succ no strong texture
- ➤ crystallite size
- Area detector
- Point detector

Scan choice straightforward

XRD - BS

- GUI for removal of background and thickness corrections
 - http://www-ssrl.stanford.edu/~swebb/xrdbs.zip
 - http://www-ssrl.stanford.edu/~swebb/xrdbs.htm (coming soon)

Thin Films for Magnetic Recording

Thin Films for Magnetic Recording

Toney, Samant, Lin, Mauri, Appl. Phys. Lett. 81, 4565 (2002)

SSRL

MnPt Films: chemical order

chemically disordered fcc structure not antiferromagnetic

chemically ordered $L1_0$ structure (face centered tetragonal) c/a = 0.92antiferromagnetic ($T_N = 700-800^\circ$ C)

Cebollada, Farrow & Toney, in Magnetic Nanostructures, Nalaw, ed. 2002

MnPt Films: chemical order

chemical order parameter (S): extent of chemical order

determine S from peak intensities (110)/(220) ratio

Cebollada, Farrow & Toney, in Magnetic Nanostructures, Nalaw, ed. 2002

Highly Textured Thin Films

sputtered
annealed at 280C
for 2 hours

slice gives spots

MnPt Films: diffraction

MnPt Films: diffraction

- increased thickness: the superlattice (001) and (110) peaks increase => more chemical ordering
- coexistence of fcc and $L1_0$

Toney, Samant, Lin, Mauri, Appl. Phys. Lett. 81, 4565 (2002)

MnPt Film Structure

- coexistence of fcc and $L1_0$ MnPt (inhomogeneous)
- complete chemical order for highest H_{eb}

MnPt Films: crystallite size

MnPt Films: crystallite size

Texture in Thin Films

• Pole figure measures orientation distribution of diffracting planes

• $\Psi = 90 \text{ deg}$ planes \perp to substrate

MnPt Films: Texture

MnPt Films

as deposited

seed layer induces (111) growth in NiFe & Cu [(00.2) in hcp Co & CoFe] and columnar morphology
MnPt follows (111) growth

annealed

- ➢ NiFe & Cu maintain (111) orientation [(00.2) in Co & CoFe]
- ➢ fcc MnPt keeps (111) orientation
- ≻ L10 MnPt:
 - \checkmark some keeps (111) orientation
 - \checkmark some becomes nearly isotropic
 - \checkmark grain growth

 $=> L1_0$ MnPt forms by nucleation and growth

MnPt Films: Summary

- > thin MnPt remains fcc => not antiferromagnetic and no exchange bias coexistence between fcc and $L1_0$ (inhomogeneous)
- \succ need complete L1₀ order to get highest exchange
- ➢ no (<0.5 nm) fcc layer near interface</p>
- ➢ grain growth and change in preferred orientation with development of chemical order

$=> L1_0$ forms by nucleation & growth

MnPt films:

- > phase identification (L1₀, fcc)
- ➤ lattice parameters (strain)
- ➤ texture
- ➤ crystallite size
 - Area detector
 - Point detector
- Scan choice requires knowledge of reciprocal space & what you want to learn
- Same is true for pentacene

X-ray Reflectivity

$Q = (4\pi/\lambda) \sin \theta$

 $\begin{array}{ll} Q < \ Q_c: \ R \approx \ 1 \\ Q >> Q_c: \ R \approx (Q_c/Q)^4 \end{array}$

 $\begin{array}{l} R = reflectivity \\ Q_c \ \approx \sqrt{\rho_{e\text{-}}} \,, \, electron \,\, density \end{array}$

 $\mathbf{R} \approx |\mathbf{r}_1 + \mathbf{r}_2 \exp(i\mathbf{Q}\mathbf{D})|^2$

- Lu, Lee, Thomas, Acta Cryst. A52, 11-41 (1996).
- Tolan, "X-ray Scattering from Soft-Matter: Materials Science and Basic Research", Springer (1998).

Lubricant Films

Lubricant Films: Thickness

 $R \approx |\mathbf{r}_1 + \mathbf{r}_2 \exp(iQD)|^2$

What can you learn?

- > film thickness (accurate!)
- \succ film density
- ➢ film roughness

• Toney, Mate, Pocker, IEEE Trans. Magn. **34**, 1774 (1998)

• Toney, Mate, Leach, Pocker, J. Coll. Inter. Sci. 225, 119 (2000)

Lubricant Films: Thickness

ellipsometry and ESCA can provide accurate thickness

• Toney, Mate, Pocker, IEEE Trans. Magn. **34**, 1774 (1998)

• Toney, Mate, Leach, Pocker, J. Coll. Inter. Sci. 225, 119 (2000)

Lubricant Films: Roughness

- lubricant smoothes carbon surface
- for thick films, roughness approaches limit due to molecular nature of lubricant molecule

Toney, Mate, Leach, Appl. Phys Lett. 77, 3296 (2000)

X-ray Reflectivity: Summary

What you can learn: ➤ accurate film thickness

- (Å resolution)
- ➢ film density
- ➢ film roughness
- surface morphology
- ➢ single and multiple layers

Summary

what do you want to learn:

- ➢ phase identification
- ➢ lattice parameters
- ➤ defects
- ➤ texture
- ➤ crystallite size
- ➤ atomic structure

What do you do?

- what beam line? (2-1, 7-2, 11-3)
 - area vs point detector; flux; energy
- what scans? ("where" in reciprocal space)

