























## X-ray Mirrors Non-idealities

- grazing incidence optics introduce focus aberrations particularly when used to focus in horizontal and vertical planes simultaneously (function of accept.)
- toroidal mirrors located upstream of a crystal monochromator can significantly limit the energy resolution of the mono as discussed below
- mirror polish errors introduce focus blowup (eg., 2ur rms error on mirror 15m from focus broadens beam 60um rms)
- absorbed power can distort mirror surface resulting in focus degradation and time dependent focus changes
- beam stability crucially dependent upon mirror stability (eg., 1um differential motion at mirror ends can steer beam 20-30um at sample)

BL - 5/16/06 SSRL Scattering Workshop - Rabedeau













## X-ray Crystal Monochromators Harmonic Content



- crystal monochromators pass not only the fundamental energy of interest but also allowed higher order harmonics since  $\sin \theta = (\lambda / 2a_0)(h^2 + k^2 + l^2)^{\frac{1}{2}}$
- fortunately the narrower intrinsic (Darwin) rocking curve width of higher order harmonics decreases the diffracted intensity as a function of peak index
- Si(220) example with fundamental at 12keV (15.607 deg):

| index | energy (keV) | Darwin (urad) | δε/ε     |
|-------|--------------|---------------|----------|
| 220   | 12.0         | 15.99         | 5.72E-05 |
| 440   | 24.0         | 2.55          | 9.15E-06 |
| 660   | 36.0         | 0.645         | 2.31E-06 |

- narrower rocking curves also facilitate slightly detuning double crystal pair in monochromator to suppress diffraction from harmonics while retaining most of diffracted intensity of fundamental
  - detuning maximizes mono sensitivity to crystal angular misalignment!
  - *it is always better to use mirrors to harmonic reject when feasible (eg., variable incidence M0 on BL7-2 and fixed incident M0 on BL2-1 & 11-3)*

BL - 5/16/06 SSRL Scattering Workshop - Rabedeau









BL - 5/16/06 SSRL Scattering Workshop - Rabedeau

|                  |                                | Questions? |  |
|------------------|--------------------------------|------------|--|
|                  |                                |            |  |
| BL - 5/16/06 SSR | L Scattering Workshop - Rabede | cau        |  |