What uşe is Reciprócal, Space? An Introduction

1st Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques ip Materials and Environmęntal Sciences May 16, 2006

Starting from Braggs' law...

Bragg's Law:
 $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$

- Good phenomenologically
- Good enough for a Nobel prize (1915)

BUT...

- There are a gabillion planes in a crystal.
- How do we keep track of them?
- How do we know where they will diffract (single xtals)?
- What are their diffraction intensities?

Better approach...

- Make a "map" of the diffraction conditions of the crystal.
- For example, define a map spot for each diffraction condition.
- Each spot represents kajillions of parallel atomic planes.
- 3-D map.
- Such a map would provide a facile and convenient way to describe the relationships between planes in a crystal a considerable simplification of a messy and redundant problem.

Start again from diffracting planes...

Define unit vectors $\boldsymbol{s}_{0}, \boldsymbol{s}$

- Notice that $\left|s-s_{0}\right|=2 \operatorname{Sin} \theta$
- Substitute in Bragg's law...

$$
N \mathrm{~d}=2 \operatorname{Sin} \theta \ldots
$$

Diffraction occurs when

$$
\left|s-s_{0}\right|=N d
$$

To use Bragg's law in 3D...

Divide by $\lambda . .$.

- Divide s, s_{0} by $\lambda \ldots\left(\left|s-s_{0}\right|\right) / \lambda=1 / d=2 \operatorname{Sin} \theta / \lambda$
- Define a "map point" at end of $s-s_{0} / \lambda$
- Graphical representation of Bragg's law can be obtained by drawing a circumscribing circle of radius $1 / \lambda$ around vectors...

Graphical Representation of Bragg's Law

- Bragg's law is obeyed for any triangle inscribed within the circle: $\operatorname{Sin} \theta=(1 / d) /(2 / \lambda)$
- Note, sample "sits" at center of circle.

Ewald Sphere

- Bragg's law is obeyed for any triangle inscribed within the circle: $\operatorname{Sin} \theta=(1 / d) /(2 / \lambda)$

Bragg's law is satisfied and diffraction occurs only when map point intersects circle.

The diffracted beam passes through the map point.

In 3D, circle becomes Ewald Sphere, has units of \AA^{-1}. Map points define a reciprocal lattice.

Vector representation carries Bragg's law into 3D.

Families of planes become points!

Single point now represents all planes in all unit cells of the crystal that are parallel to the crystal plane of interest and have same d value.

Thus, the RECIPROCAL LATTICE is obtained

Reciprocal Lattice of y-LiAIO2

Projection along c: hk0 layer Note 4-fold symmetry

Projection along b: h0l layer

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}=5.17 \mathrm{~A} ; \mathrm{c}=6.27 \AA ; \mathrm{P} 4_{1} 2_{1} 2 \text { (tetragonal) } \\
& \mathrm{a}^{*}=\mathrm{b}^{*}=0.19 \AA^{-1} ; \mathrm{c}^{*}=0.16 \AA^{-1} \\
& \text { general systematic absences (00ln; } \ell \neq 4) \text {, ([2n-1]00) }
\end{aligned}
$$

Streaking is caused by finite width of Ewald sphere;

Tube-source contains large energy range due to high-energy bremsstrahlung radiation

In a powder, orientational averaging produces rings instead of spots

OUTLINE

I. What is the reciprocal lattice?

1. Bragg's law.
2. Ewald sphere.
3. Reciprocal Lattice.
II. How do you use it?
4. Types of scans:

Longitudinal or 0-20,
Rocking curve scan
Arbitrary reciprocal space scan

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

1. Longitudinal or $\theta-2 \theta$ scan

Sample moves on θ, Detector follows on 2θ

- Note scan is linear in units of $\operatorname{Sin} \theta / \lambda$ - not θ !
- Provides information about relative arrangements, angles, and spacings between crystal planes.

2. Rocking Curve scan

Sample moves on θ, Detector fixed Provides information on sample mosaicity. Tells about quality of orientation

2. Rocking Curve scan

Sample moves on θ, Detector fixed
Provides information on sample mosaicity \& quality of orientation

2. Rocking Curve scan

Sample moves on θ, Detector fixed

Provides information on sample mosaicity \&

quality of orientation

3. Arbitrary Reciprocal Lattice scans

Choose path through RL to satisfy experimental need, e.g., CTR measurements

A note about " q "

In practice \boldsymbol{q} is used instead of \boldsymbol{s} - \boldsymbol{s}_{0}

$$
|q|=\left|k^{\prime}-k_{0}\right|=2 \pi^{*}\left|s-s_{0}\right|
$$

$|q|=4 \pi \operatorname{Sin} \theta / \lambda$

