What use is Reciprocal Space? An Introduction

ίοι

h

John Bargar 1st Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences May 16, 2006

Starting from Braggs' law...

Bragg's Law: 2d sin θ = n λ Good phenomenologically
Good enough for a Nobel prize (1915)

BUT...

- There are a *gabillion* planes in a crystal.
- How do we keep track of them?
 - How do we know where they will diffract (single xtals)?
 - What are their diffraction intensities?

Better approach...

- Make a "map" of the diffraction conditions of the crystal.
- For example, define a map spot for each diffraction condition.
- Each spot represents kajillions of parallel atomic planes.
- 3-D map.

• Such a map would provide a facile and convenient way to describe the relationships between planes in a crystal – a considerable simplification of a messy and redundant problem.

Start again from diffracting planes...

Define unit vectors s₀, s

• Notice that $|s-s_0| = 2\sin\theta$

• Substitute in Bragg's law... $\lambda/d = 2Sin\theta...$

To use Bragg's law in 3D...

Divide by λ....

- Divide s, s₀ by λ ... $(|s-s_0|)/\lambda = 1/d = 2Sin\theta/\lambda$
- Define a "map point" at end of $s s_0 / \lambda$

• Graphical representation of Bragg's law can be obtained by drawing a circumscribing circle of radius $1/\lambda$ around vectors...

Graphical Representation of Bragg's Law

• Bragg's law is obeyed for any triangle inscribed within the circle: $Sin\theta = (1/d)/(2/\lambda)$

• Note, sample "sits" at center of circle.

Ewald Sphere

• Bragg's law is obeyed for any triangle inscribed within the circle: $Sin\theta = (1/d)/(2/\lambda)$

Bragg's law is satisfied and diffraction occurs only when map point intersects circle.

The diffracted beam passes through the map point.

In 3D, circle becomes *Ewald Sphere*, has units of Á⁻¹. Map points define *a reciprocal lattice*.

Vector representation carries Bragg's law into 3D.

Families of planes become points!

Single point now represents *all planes in all unit cells of the crystal* that are parallel to the crystal plane of interest and have same d value.

Thus, the RECIPROCAL LATTICE is obtained

Distances between origin and RL points give 1/d.

Reciprocal Lattice Axes: a* normal to a-b plane b* normal to a-c plane c* normal to b-c plane

Index RL points based upon axes

Each point represents *all* parallel crystal planes. Eg., *all*

planes parallel to the a-c plane are captured by (010) spot.

Families of planes become points!

Reciprocal Lattice of y-LiAIO₂

Projection along c: *hk*0 layer Note 4-fold symmetry

Projection along b: *h*0*l* **layer**

a = b = 5.17 Å; c = 6.27 Å; P4₁2₁2 (tetragonal) a* = b* = 0.19 Å⁻¹; c* = 0.16 Å⁻¹ general systematic absences (00 ℓ n; $\ell \neq 4$), ([2n-1]00)

Streaking is caused by finite width of Ewald sphere;

Tube-source contains large energy range due to high-energy bremsstrahlung radiation

In a powder, orientational averaging produces rings instead of spots

OUTLINE

- I. What is the reciprocal lattice?
- 1. Bragg's law.
- 2. Ewald sphere.
- 3. Reciprocal Lattice.
- II. How do you use it?
- 4. Types of scans:

Longitudinal or θ-2θ,

Rocking curve scan

Arbitrary reciprocal space scan

1. Longitudinal or θ-2θ scan Sample moves on θ, Detector follows on 2θ

1. Longitudinal or θ-2θ scan Sample moves on θ, Detector follows on 2θ

1. Longitudinal or θ-2θ scan Sample moves on θ , Detector follows on 2θ 0 = $2Sin\theta/\lambda$ 0 2θ 0 20 30 40

1. Longitudinal or θ-2θ scan Sample moves on θ, Detector follows on 2θ

1. Longitudinal or θ-2θ scan Sample moves on θ, Detector follows on 2θ

Note scan is linear in units of Sinθ/λ - not θ!
 Provides information about relative arrangements, angles, and spacings between crystal planes.

2. Rocking Curve scan Sample moves on θ, Detector fixed **Provides information on sample mosaicity. Tells** about quality of orientation

2. Rocking Curve scan Sample moves on θ, Detector fixed Provides information on sample mosaicity & quality of orientation

2. Rocking Curve scan Sample moves on θ, Detector fixed Provides information on sample mosaicity & quality of orientation

3. Arbitrary Reciprocal Lattice scans Choose path through RL to satisfy experimental need, e.g., CTR measurements

A note about "q"

In practice *q* is used instead of *s*-*s*₀

 $|q| = |k' - k_0| = 2\pi * |s - s_0|$

 $|\boldsymbol{q}| = 4\pi \text{Sin}\theta/\lambda$

