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Physics of Diffraction

X-ray Lens not 
very good

Mathematically

Intersection of

Ewald sphere with Reci Lattice



outline

Information in a Diffraction pattern

Structure Solution

Refinement Methods

Pointers for Refinement quality data



What does a diffraction 
pattern tell us?

Peak Shape & Width:
crystallite size
Strain gradient

Peak Positions:
Phase identification
Lattice symmetry
Lattice expansion

Peak Intensity:
Structure solution
Crystallite orientation



Sample Diffraction
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Sample Diffraction

FT(Sample) = FT((S x P)*M)

Convolution theorem

FT(Sample) = FT(S x P) x FT(M)

FT(Sample) = (FT(S) * FT(P)) x FT(M)
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FT (S x P) = FT(S) * FT(P)
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FT(sample) = FT(S x P) x FT(M)
Along X direction

x
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What does a diffraction 
pattern tell us?

Peak Shape & Width:
crystallite size
Strain gradient

Peak Positions:
Phase identification
Lattice symmetry
Lattice expansion

Peak Intensity:
Structure solution
Crystallite orientation



Structure Solution

Single Crystal
Protein Structure

Sample with heavy Z 
problems Due to

Absorption/extinction 
effects

Mostly used in Resonance 
mode

Site specific valence 
Orbital ordering.

Powder
Due to small crystallite size 
kinematic equations valid

Many small molecule 
structures obtained via 
synchrotron diffraction

Peak overlap a problem – high 
resolution setup helps

Much lower intensity – loss on 
super lattice peaks from small 
symmetry breaks.  (Fourier 
difference helps)



Diffraction from Crystalline Solid

Long range order ----> diffraction pattern periodic
crystal rotates ----> diffraction pattern rotates

Pink beam laue pattern

Or intersection of a large 
Ewald Sphere with RL



From 4 crystallites



From Powder



Powder Pattern 

Loss of angular information

Not a problem as peak 
position =   fn(a, b & α )

Peak Overlap :: A problem
But can be useful for precise 
lattice parameter 
measurements



Peak Broadening 

~ (invers.) “size” of the sample
Crystallite size
Domain size

Strain & strain gradient 

Diffractometer resolution should be better than 
Peak broadening But not much better.



Diffractometer Resolution

Wd
2 = M2 x φb

2 + φs
2

M= (2 tan θ/tan θm -tan θa/ tan θm -1)

Where 
φ
b

= divergence of the incident beam, 
φ
s

= cumulative divergences due to slits and apertures

θ, θ
a

and  θ
m

= Bragg angle for the sample, analyzer and the monochromator



Powder Average

δ(θ)

θ
2θ

Fixed 2θ

Θ

δ(θ) = Mosaic width ~ 0.001 – 0.01 deg
δ(Θ) = beam dvg ~ >0.1 deg for sealed tubes

~ 0.01 deg for synchrotron

Need ~ 30000 rnd crystallites - synchr

Single crystal – no intensity 
Even if Bragg angle right,

But the incident angle wrong
Θ +/− δ(Θ)  = θ +/− δ(θ)

For Powder Avg

Need <3600 rnd crystallites – sealed tube
otron

Powder samples must be prepared carefully
And data must be collected while rocking the sample



Physics of Diffraction

No X-ray Lens

Mathematically



Phase Problem

ρxyz = Σhkl Fhkl exp(-2πi{hx + ky + lz})
Fhkl is a Complex quantity

Fhkl(fi, ri): (Fhkl)2 = Ihkl/(K*Lp*Abs)

ρxyz = Σhkl C√Ihkl exp(-(φ + Δφ))
Δφ = phase unknown

Hence Inverse Modeling



Solution to Phase Problem

Must be guessed
And then refined.

How to guess?
Heavy atom substitution, SAD or MAD
Similarity to homologous compounds

Patterson function or pair distribution analysis.



Procedure for 
Refinement/Inverse Modeling 

Measure peak positions:
Obtain lattice symmetry and point group

Guess the space group. 
Use all and compare via F-factor analysis

Guess the motif and its placement
Phases for each hkl

Measure the peak widths
Use an appropriate profile shape function

Construct a full diff. pattern and compare with 
measurements



Inverse Modeling Method 1

Reitveld Method Data

Model Refined Structure
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Inverse Modeling Method 2

Fourier Method Data

Model Refined Structure
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Inverse Modeling Methods

Rietveld Method
More precise
Yields Statistically reliable 
uncertainties

Fourier Method
Picture of the real space
Shows “missing” atoms, 
broken symmetry, 
positional disorder

Should iterate between Rietveld and Fourier.
Be skeptical about the Fourier picture if Rietveld
refinement does not significantly improve the fit with 
the “new” model.



Need for High Q

Many more reflections at higher Q.

Therefore, most of the structural information is at higher Q



Profile Shape function

Empirical
Voigt function modified for axial divergence 
(Finger, Jephcoat, Cox)

Refinable parameters – for crystallite size, strain 
gradient, etc…

From Fundamental Principles



Collect data on Calibrant
under the same conditions

Obtain accurate wavelength and 
diffractometer misalignment parameters
Obtain the initial values for the profile 
function (instrumental only parameters)
Refine polarization factor

Tells of other misalignment and problems



Selected list of Programs

CCP14 for a more complete list
http://www.ccp14.ac.uk/mirror/want_to_do.html

GSAS
Fullprof
DBW
MAUD

Topaz – not free - Bruker – fundamental 
approach



Structure of MnO
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Resonance Scattering

Fhkl = Σxyz fxyz exp(2πi{hx + ky + lz})
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fxyz = scattering density
Away from absorption edge

α electron density



Anomalous Scattering Factors

fxyz = fe{fiεxyzT} fe = Thomson scattering for an electron 

fi = fi
0(q) + fi’(E) + i fi”(E)

μ(E) = E * fi”(E)
Kramers -Kronig :: fi’(E) <->  fi”(E)
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Resonance Scattering vs Xanes
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XANE Spectra of Mn Oxides
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F’ for Mn Oxides

6450 6500 6550

-9

-6

-3

f' 
(e

le
ct

ro
ns

)

Energy (eV)

6 5 3 0 6 5 4 0 6 5 5 0 6 5 6 0

-1 0

- 8

- 6

M n O 2

M n 2 O 3 :1
M n 2 O 3 :2

M n 3 O 4 :2
M n 3 O 4 :1

M n O

C r o m e r -L ib e r m a n  M n

f' 
(e

le
ct

ro
ns

)

E n e r g y  ( e V )



Why Resonance Scattering?

Sensitive to a specific crystallographic 
phase.  (e.g., can investigate FeO layer growing on 

metallic Fe.)
Sensitive to a specific crystallographic site 
in a phase.  (e.g., can investigate the tetrahedral 

and the octahedral site of Mn3O4)



Mn valences in Mn Oxides
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•Mn valence of the two sites in 
Mn2O3 very similar

•Valence of the two Mn sites in 
Mn3O4 different but not as 
different as expected.
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