Overview of x-ray techniques

Makina YABASHI SPring-8/JASRI

ICFA Future Light Sources Subpanel Miniworkshop on XFEL Short Bunch Measurement and Timing Stanford Linear Accelerator Center July, 26 2004

XFEL

Short pulse Spatial Coherence Peak Brilliance **X-beam Diagnostics**

X-beam Handling

3rd gen. SR

XFEL

Short pulse Spatial Coherence Peak Brilliance X-beam Handling X-beam Diagnostics

3rd gen. SR

Diamond workshop @ ESRF, May 24-25, 2004

Tamasaku et al: "Characterization of synthetic IIa diamonds at SPring-8" Bragg Geometry Si 220(b=20.9)-C 111 @9.44 keV 5 mm

Mirror

Can we use under coherent illumination ?

Mirror: SP8 - Osaka Univ. collaboration

Mori et al, Proc. SPIE (2001)

7

Mirror: Nanobeam

Summer in 2003

E=15 keV(=0.8 Å)

July 2004: 40 nm focus was achieved !

Window: Be

NGK, BR-3

Purity: 98.5 % Roughness: > 1 μm Ra Thickness: 200 μm Purity: 99.8 % Roughness: 0.1 μm Ra Thickness: 250 μm t

Phase contrast imaging @ 1-km BL (0.5 μ m res., L ~1.8 m, λ ~1 Å)

S. Goto et al: Proc. SRI2003

Brush-Wellman, IF-1

9

3rd gen. SR

10

X-ray diagnostics

Temporal profile

How to measure

Temporal domain Laser & X-ray coincidence

Fourier transform

Frequency domain X-ray Spectral Interferometry

Spatial profile: Coherence

Real-space domain e-beam size measurement

Fourier transform

Reciprocal-space domain X-ray Interferometry

Interferometry

Amplitude interferometry

Intensity interferometry

Thomas Young, 1807

Hanbury-Brown and Twiss, 1956 Photon Statistics

Photon statistics

Chaotic light

Coherent light

Intensity interferometry (2nd-order interferometry)

Contents

Introduction Principle Experiment at 3rd. gen SR Proposal for SPPS Proposal for XFEL

 $(x,t) = \left| E(x,t) \right|^2$

Variation

Two pinholes

One pinhole + Beam splitter

Mode number

Mode number M: Number of coherence cells in the resolution function ($M = M_X M_Y M_T$)

Large **R**

11 **M**

Contents

Introduction Principle Experiment at 3rd. gen SR Spatial domain **Temporal domain Proposal for SPPS Proposal for XFEL**

Difficulty in 3rd gen. SR

 $M_T = \sqrt{1 + \left(\frac{s_T}{\sigma_T}\right)^2} \quad \begin{array}{l} s_T \sim 10 - 100 \text{ ps (pulse width of SR)} \\ \sigma_T \sim \text{sub-fs (N_U\lambda/c) for raw undulator radiation} \\ M_T \sim 10^{-5} - 10^{-6} \\ R = 1/M_T \sim 10^{-5} - 10^{-6} \end{array}$

 $\sigma_{\rm T} = \lambda^2 / \Delta \lambda = \lambda E / \Delta E \propto 1 / \Delta E$

Use of high-resolution monochromator (HRM) Optimized condition: $\sigma_T \sim s_T$ (~ 10 ps)

 $\Delta E \sim sub \text{ meV}$

Y. Kunimune et al. JSR (1998) E. Gluskin et al. JSR (2000)

High-Resolution Mono

Energy Resolutions at *E*=14.4 keV *G. Faigel et al. 1987; T. Ishikawa et al. 1992;* <u>*T. Toellner et al. 1992, 1997; A.I. Chumakov et al. 1996, 2000*</u>

25

E = 14.4 keVSi 11 5 3 Glancing angle = 2° $b = b_1 = b_2 = 1/b_3 = 1/b_4 = 1/10.4$ Crystal size: 30 ×15 ×12 mm³ Spatial acceptance = 100 µm $\Delta E = 100 \text{ µeV}$

Dual co-axial goniometer #2

Dual co-axial goniometer #1 (12.2 nrad/pls)

0

6

Result

Achieved Resolution

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, *Rev. Sci. Instrum.* **72**, 4080 (2001).

30

Spatial domain

$\varepsilon = 6 \text{ nm.rad}$

$\varepsilon = 3 \text{ nm.rad}$

 $\sigma_y = 124.3 \pm 6.9 \ \mu m$ $s_y = 5.9 \pm 0.3 \ \mu m$ $\epsilon_y = 6.0 \pm 0.7 \ pm.rad$ $\kappa = 0.10 \ \%$

I. Yabashi, K. Tamasaku & T. Ishikawa, *hys. Rev. Lett.* **87**, 140801 (2001); *hys. Rev.* A **69**, 023813 (2004).

$$\begin{split} \sigma_y &= 161.3 \pm 5.0 \ \mu m \\ s_y &= 4.6 \pm 0.14 \ \mu m \\ \epsilon_y &= 3.6 \pm 0.2 \ pm.rad, \ \kappa = 0.12 \ \% \qquad _{31} \end{split}$$

Pulse width

 $R_{\text{max}} = 1/M_{\text{T}} = (1 + \sigma_{\text{T}}^2 / s_{\text{T}}^2)^{-1/2}$ $(M_{\text{X}} = M_{\text{Y}} = 1)$ $\sigma_{\text{T}} = 4h \ln 2/\Delta E$ Measure pulse width S_{t}

Result

Mode number vs. bandwidth

M. Yabashi, K. Tamasaku, and T. Ishikawa, *Phys. Rev. Lett.* **88**, 244801 (2002).

Contents

Introduction Principle Experiment at 3rd. gen SR Proposal for SPPS Proposal for XFEL

Proposed Setup

38

Key for success

1. Bose degeneracy	S/N \propto δ η (<i>fT</i>) ^{1/2}	
Degeneracy δ :	SP8 25-m U ~ 0.3	SPPS ~ 90
	$(B_{\rm P} \sim 6 \times 10^{23})$ $\lambda \sim 0.086 \rm nm$	$(B_{\rm P} \sim 5 \times 10^{25})$ $\lambda \sim 0.13 \text{ nm}$
Efficiency η:	10-2	10-1
Repetition rate f :	36 MHz	10 Hz
δ η $f^{1/2}$:	18	30
Time:	~ 10 min	< 10 min ??

2. Normalization of intensity fluctuation unrelated to interference

Required time

Key for success

1. Bose degeneracy		
$S/N \propto \delta$ η $(fT)^{1/2}$		
Degeneracy δ :	~ 0.3	~ 90
	$(B_{\rm P} \sim 6 \times 10^{23}$	$(B_{\rm P} \sim 5 \times 10^{25}$
	λ ~0.086 nm)	λ ~ 0.13 nm)
Efficiency η:	10-2	10-1
Repetition rate f :	36 MHz	10 Hz
δη $f^{1/2}$:	18	30
Time:	~ 10 min	< 10 min ??

2. Normalization of intensity fluctuation unrelated to interference

Average for repeated pulses

42

Single-shot Measurement

$\Delta T_{I} \cong h / \Delta E_{I}$

J. Krzywinski, E. Saldin et al. NIM A (1997)

Simulation

Pulse width estimation (a priori knowledge of pulse shape)

Detailed information

$$\frac{FT}{\left|A\left(\Delta E\right)\right|^{2}} \quad \left|\tilde{A}\left(\Delta t\right)\right|^{2}$$

Require phase information

Phase retrieval

Oversampling method 2D: OK

Miao et al. PRL 89 (2002) 088303.

SEM image of Ni pattern on SiN

Coherent Scattering Pattern

2D Reconstructed Image (<10 nm resolution)

1D: generally impossible for complex object

Example: FROG

Frequency Resolved Optical Gating Measure energy spectrum with changing delay time

R. Trebino and D. J. Kane, JOSA A (1993).

2D Phase Retrieval

Summary

We can apply intensity interferometry to measure spatial and temporal profile of 3rd gen. SR source. For shorter pulse, much easier. For single-shot detection, extension of conventional spectroscopy technique will be useful. For determination of pulse shape, we have to retrieve phase information. Further considerations & discussions are required.

Acknowledgement

T. Ishikawa, K. Tamasaku, S. Goto, D. Miwa, T. Ueda, A. Baron H. Kitamura, T. Shintake, T. Hara, H. Tanaka (SPring-8)

K. Yamauchi, K. Yamamura, H. Mimura, T. Matsuyama, H. Yumoto, Y. Mori (Osaka Univ.)

J. Hastings, J. Arthur (SLAC)