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A system for fast single-transient radiation measurements E
|
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Single shot x-ray recorder for complex arbitrary waveforms. Sub-ps resolution
and greater than THz instantaneous bandwidth.



Radoptic Effect Radiation Detection _E
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*Why IlI-V semiconductors?

*Huge base of research in all optical
switching for telecom applications

*established device technology
*index change depends on p,
* ~100 fs temporal response

» typical all-optical switching results

Data from: Park, et. al. Appl. Phys. Lett. 52 (15), pp 1201-1203
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* lonizing radiation is the analog to the optical pump, index modulation physics the same

» The use of the optical probe is ideal for high-energy radiation particle detectors and high-speed
operation: relatively high material volume required (no transport limitations)



Results from the all-optical switching field show fast response I@

K. Biermann, et.al., Ultrafast optical nonlinearity of low- T. Okuno, et. al., Femtosecond response time in

temperature-grown GalnAs/AlInAs quantum wells at beryllium-doped low-temperature-grown

wavelengths around 1.55 um, Appl. Phys. Lett., 80 (11), GaAs/AlAs multiple quantum wells, Appl. Phys. Lett.

pp1936-1938 (2002) 79 (6), pp 764-766 (2001)
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« These devices are the optically-pumped analog of RadSensor.

* We expect similar temporal responses using appropriate epitaxial
growth or neutrondamaged epi



To probe index change: Interferometry =
Mach-Zehnder and Fabry-Perot compared iE
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»Sensitivity will be determined by how small a fringe-fraction we can
measure (1-2% is reasonable); better sensitivity => higher fringe fraction

»The sensitivity of the FP is essentially that of the MZ, multiplied by 2F/x



Our First RadOptic Effect Demonstration Was at SSRL

System fielded at SSRL

7 mm long InGaAsP waveguide chip
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We have measured the
single-xray photon phase-
shift to be

o= 2.0x10* radians

@ 8.9 kev and 70 nm from
the bandedge.
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RadSensor Linearity

RadSensor Linearity
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RadSensor response appears fairly linear over 2 decades
Note that lower amplitude signals correspond to single xray photon events (9 keV)



Now We Are Focused on Imager Development in FY04

Optical Probe Beam
P Optical Replica of Xray
Xray

’ image
image /

5y Beam-splitter

Monolithic RadSensor Reflection
Modulation Array--Fabrication
would be at the wafer level using
well-established techniques used
for VCSELs— 106 pixels
achievable

R&D Challenges:

=*Optimizing sensitivity

The cavity geometry is not
only convenient for imagers it
also allows for a sensitivity Feprionthick: cavity {overtnily)
enhancement ~ cavity finesse =epi with short e-h pair lifetime (fast)
» containing scattering (if necessary)




Optical phase shift from localized radiation excitation @
|-
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RadSensor phase modulation is xray irradiance dependent I@
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N_ = # of xrays absorbed in mode volume= y 4_ ,.(1—-exp(—ud)) Since the areas
w = xray irradiance (# xrays/um?) into cavity volume cancel, the

‘ 2r 1 CE, signal is only
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- E B xray irradiance
T
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sat 0

signal is independent of pixel size... very different from conventional detectors
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RadSensor Optical System fielded at USP IE

Probe ~1550 nm Fiber
Xrays < circulator
>
— ( ’ ’4 x ﬂD—> SCOpe
Optical fiber
GRIN lens High-speed optical
detector
. . /v
Cavity mirrors = | Tunable probe

Cavity RadSensor Proto Package
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First Single-Transient, Cavity RadSensor Data E
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» Standard Si Xray PIN diodes were
used to monitor the xray output for
each shot

» This shot had only Be filter

Fiber to optical
subsystem

RadSensor device

= Be and Cu filters were used to define
and narrow xray spectrum later

New geometry works with system-limited risetime
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DM// Temporal Imaging Explained by Analogy to
?;”—“*“""“”’“ Spatial Imaging
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_ It Works But Old System Had Many Problems
ﬂ_@ﬁ (from DN¥ LDRD 98-ERD-027) y E
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Past System Setup Streak Camera Single-Shot Recording
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 VERY LARGE free space system » Two pulse test pattern, changed in 670 fs steps

 Filled 5 x 12 ft optical table  68.8 ps changes at output, demonstrated

M=+103 magnification

* Fundamental problem was low efficiency,
 Not practical for imaging producing poor Dynamic Range (DR)

» Many mechanical stability problems

A Practical Instrument Requires a Complete Redesign

(Introducing new challenges)

(See backup slides for addition past results and publications from LDRD 98-ERD-027)



MQ,@{M: Proposed Development of Robust Guided Wave System E
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~ 250 fs resolution

Dynamic Range > 100

Practical record length (100ps — 1 ns)
Compact and Robust

* New Challenges:
— Noise due to Amplified Spontaneous Emission
— Aberrations due to higher order dispersion terms and possible self phase modulation
— Polarization Mode Dispersion
— Packaging of nonlinear crystal with fiber input & output



RadSensor/Time lens approach to xray pulse measurement E
A

X-ray pulse
a

Time-
lens/
Probe Optical [¢
Laser streak Trigger signal in
camera
x OE Detector
. ven Vprobe . 1 1 o
Phase matching condition: ——=sina =—=§—>a =16.6
C n .

For slow-recovery material (integrating detector), signal can be differentiated to
obtain pulse shape.

Fast recovery material will probably yield better dynamic range

~100 fs temporal resolutions are possible
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Potential RadSensor Based Cross-timing Scheme I@

X-ray pulse

Time-
lens/
Optical
streak
camera |

Optical pulse

Trigger signal in

x OE Detector

Phase matching condition: Vorobe _ sing = 1 — s Sa=16.6

C n

Cross-timing ~ 100 fs is possible using just the rising edge of the
RadSensor signal
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Conclusions and future work E

=\Ve have

»demonstrated that xrays can be produce an optical phase modulation for detection
purposes, that should scale to < 1ps.

= investigated the xray sensitivity as a function of wavelength separation from the
band-edge...1.0x10-4 fringe-fractions/xray photon is best measured

»Measured the linearity over 2 decades of xray fluence.
» Developed model in reasonable agreement with measurements
» Recently demonstrated single-shot results with new cavity geometry
=\We plan to:
= Improve the sensitivity using optimized cavity structures (USP experiments)
» Goal is single xray photon sensitivity
» make fast devices and characterize temporal response (<ps)
=Develop imaging versions
=Develop companion optical recording technologies (Time lens/streaker)

We believe these approaches are capable of 100 fs temporal resolution and

reasonable dynamic range

18
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Backup slides
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Our device design model is aimed at optimizing sensitivity _E
A=

Model output

o) PR)C 1 dR .~ The “Contrast Ratio” is maximized for
0 ¢( )md optimum detector sensitivity
B, R(p)d¢
Model inputs
The linear index is a function of material composition which is
n= H (E l) directly related to the energy gap. We use empirically derived
gap? polynomial expressions from Amman and Buus
A 2 C 1 E
d
op (ﬂ/)rad - “=G(4) The resonant nature of the nonlinearity
A Psat Amode Eo implies close to the bandedge is good, more
phase shift
_ hel A — Egap The Urbach absorption tail is higher, closer
a = ag Xp to the bandegde, thus close to the
Eurb bandedge is bad

We are exploring the device design parameter space: mirror
reflectivities, thickness, wavelength offset to quantify the trade-

offs to maximize sensitivity

20



Design model examples for sensitivity optimization

Model inputs
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5%A;ontrast for a single xray photon at 8 keV, this should be detectable

T

The model also outputs cavity results in 3D (vs. wavelength and thickness)...

Model implemented in Matlab adapted from codes developed by John Heebner
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Wavelength Offset (nm)

= \We should see more resonant enhancement. Trap-filling effects may be causing the as
measured “normal fill-pattern” fringe-fractions to be preferentially saturated (x10 xray

packaging induced birefringence in the RadSensor— higher values probably more accurate
photons/SPEAR period)

»Scatter in data is primarily due to polarization instability in the interferometer caused by




We considered several cavity design approaches to
mitigate risk g

Epi-DBR-thin cavity Etched-back, thin cavity Thick cavity
mirrors
T inGaasp 5 um InGaAsP
/ l
w
Epitaxially a
grown DBR g InP
Pros: oo Pros:
= Very VCSEL-like know how to ros: « Robust (thick)
produce high-quality laser = We have control over final us
cavities cavity thickness and mirror » Relatively easy to make
= Material in the cavity is only reflectivities Cons:
InGaAsP Cons: = Cavity includes InP and
Cons: = Cavity trimming (not quite InGaAsP
working) -~
* MOCVD shutdown forced = Difficult to get good
reliance on vendors— no takers » Membrane is fragile and effective finesse
= Difficult to match resonances stressed * Impossible to get fast
to probe range (10 um OK) response

To meet our USP fielding schedule we had to go with the thick cavity
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First generation RadSensor Cavities Presented Challenges IM

Cavity resonances showing thermal drift Temporary cavity drift solution:
700 — , , , — Map detector voltage vs. phase by
ol o — shotB | varying wavelength and modulating
. 5 B f—— light on/off — Optical receiver is ac-
=500 L-----4l-- LR Ja e i cieo.| —— shotE Y
g 500 | . | i Shot coupled
by : ' —— shotG
g 400 -----lf--- P HH - HE - b e .
@ 500 Detector Voltage (Volts) vs. Phase shift (Radians)
2 00— LA i
= 3
€200 |-~~~ L LA L B Lo . g
100 p------e-o- P Wl MR L LR AN AT - g2-5
> .
% | | 1 [ [ @ o
1545 1646 1547 1548 1549 1550 1551 = :
Wavelength {nm) %
=15 §
» Finesse is very poor (~1) £ i
@ ;
» Measured using ASE from EDFA E 1 g
» Drift went away when optical input power 05
was lowered to ~ 0 dBm
» We suspected this would be a problem— % 6 g 10 12 14 16 18

locking circuit not ready for this fielding... Phase shift (Radians)
will be next time
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Typical Results Compared to Prediction from SSRL derived —
empirical constants |

These data used Be and Cu filters to narrow xray spectrum

Detector Votage [Volts)

Detector Voltage Optical Phase
0.08 T T 0.1 '! ! f
absorbed Xrays ~ 60 Cu K Xrays / umz 0.08 | A:¢measwed = O 07 radlans
2 006 —
' i | ' - - S 5 5 | | 5
i i : : k= ' : : : :
by o & 004 e e R
' R ] g E = | | i
: ’ % 002 ' i AR 1A A
: . @ . ,
S ol
m —
002
100 200 300 400 50 &0 0%k w0 3 &0 500 60
Time (nsec) Time (nsec)
2r C E,
A¢predicteaf = l//(l—eXp(—,ud)) £ G(l)
sat 0

27 8.05 keV
= (60 xrays/um?> 1.2x107°% um? )| ————— {(0.04) = 0.030 radians
(60 xraysiy )[1.55 umj( # )( 3.15eV j( )

Reasonably good comparison between SSRL experiments and USP... please
note— these are very preliminary results, analysis still underway
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