Expected Properies of Coherent LCLS FEL Emission

William M. Fawley Center For Beam Physics Lawrence Berkeley National Laboratory

Presented to the Miniworkshop on XFEL Short Bunch and Measurement and Timing, SLAC, 27 July 2004

Talk Outline

- Basic "steady-state" FEL amplifier physics
 - instability mechanism, gain curve and "FEL parameter" ρ , sensitivity to e-beam parameters
- Basic "time-dependent" (polychromatic) amplifier physics
 - "fast" time-variations arising from shot noise initiation
 - "slow" time variations arising from e-beam temporal variations (*i.e.* current, energy-spread, emittance)
 - realistic start-to-end e-beam input to undulator and expected FEL output properties
 - growth of longitudinal and transverse coherence with z
- Diagnostic separation of coherent (FEL) and incoherent (spontaneous emission) microbunching components

FEL Instability

• Resonance: radiation advances (relative to e-beam) one x-ray wavelength per undulator wavelength:

$$\lambda_s = \lambda_u \times \frac{(1 + K^2 / 2)}{2\gamma^2}$$

• FEL instability arises from microbunching and synchrotron-like rotation of e- in radiation+undulator ponderomotive wells

• Requirement for high gain: high current, low $\delta\gamma$ and ϵ

WM Fawley – Properties of Coherent LCLS FEL Emission Accelerator and Fusion Research Division

Microbunching, radiation grow exponentially with *z*

- For sufficiently high currents and long undulators, instability grows exponentially with $L_{gain} \approx \lambda_u / 4\pi \sqrt{3} \rho$
- FEL (Pierce) parameter ρ sets many FEL characteristics:

$$\rho_{1D}^3 \equiv \frac{\omega_p^2 K^2}{32 c^2 \gamma^3 k_u^2} \propto \frac{I_{\rm B}}{\varepsilon \beta} \quad \text{and} \quad \rho_{3D} \sim \rho_{1D} / 1.5 \quad \text{for LCLS}$$

- Saturation length L_{SAT} ~ λ_u /p ~ 18 L_{GAIN}
- Saturated power $P_{SAT} \sim \rho P_{beam}$
- Normalized RMS bandwidth $\Delta\omega/\omega_0 \sim \rho (L_{SAT} / z)^{1/2}$
- For LCLS, ρ ~ 4E-4, L_{GAIN} ~ 4-5m, L_{SAT} ~ 70-100 m, P_{SAT} ~ 25 GW

SASE FEL "Topography"

 $Z \rightarrow$

Temporal Variation Topology

Property	Fast	Sow
Source	Microbunching from e-beam shot noise	"Sow" e-beam variations (I_B , γ , $\delta\gamma$, ϵ , $\langle x \rangle$, $\langle y \rangle$, $\langle x' \rangle$, $\langle y' \rangle$); CSR & wake effects
Effect on Output Power	"Spiky" output; low long. coherence (sub-fs)	Sow (multi-fs) variation in P_{sat} , z_{sat} , central λ
Effect on Output Power	Relatively broadband, "spiky" output	Possible slow chirp in central λ
Shot-to-Shot Repeatability	None locally (spike position, phase completely random); <p> ~ constant</p>	Possible high repeatability (depends on injector, accelerator, & compressor)

WM Fawley – Properties of Coherent LCLS FEL Emission

1-nC LCLS: E-beam at undulator entrance

WM Fawley – Properties of Coherent LCLS FEL Emission

Predicted Output Power versus Time

2003 S2E parameters; GINGER simulation of full LCLS pulse with 12-as resolution; SASE results at output (120 m); time-steady result for max power

WM Fawley – Properties of Coherent LCLS FEL Emission

"Local" P(t) Snapshots – "fast" time variation

WM Fawley – Properties of Coherent LCLS FEL Emission

GINGER "standard" LCLS example of noise -> organized start-up -> exponential gain

Total power shows development into spikes by z~10 m

Normalized power shows self-similar spike propagation $[c - v_G] \sim 2/3 v_{slip}$

On-axis far field radiation sub-*c* spike propagation evident earlier in z

Norm. bunching shows self-similar spike propagation at $v_G > \langle v_Z \rangle$

Development of Longitudinal Coherence

- In exponential gain regime, τ_c steadily increases as \sqrt{z}
 - For SASE, $\tau_c \sim 0$ at z=0
 - Due to slippage and gain narrowing, τ_c increases (some individual temporal spikes exponentially grow and widen in time)
- Maximum τ_c reached 1-2 gain lengths before initial SASE power saturation
 - Beyond saturation, τ_c decreases (and $\Delta\omega/\omega_0$ increases) due to radiation emission to redward portion of spectrum (λ shift due to particle energy loss and sideband-like spectral chirp across intense radiation spikes)
- Nonlinear harmonic emission can be strong near saturation --- possibly useful diagnostic

Growth of Longitudinal Coherence

"Start-to-End" LCLS

- 2003 undulator layout
- Emma Parmela-ELEGANT macroparticle input to GINGER FEL code
- 12 as slice resolution
- Coherence time τ_c defined by A(τ_c)/ A(0) = 0.5
- Radiation τ_c determined from on-axis far field
- Microbunching τ_c determined using full radial averaging of particle phase

WM Fawley – Properties of Coherent LCLS FEL Emission Acc

Radiation Spectrum Development

2003 S2E LCLS parameters; full 200-fs pulse; presumed 120 Hz rep rate; GINGER simulation

WM Fawley – Properties of Coherent LCLS FEL Emission

Development of Transverse Coherence

- Lowest order, axisymmetric mode strongly favored
 - less affected by diffractive losses
 - less affected by particle betatron motion (*i.e.* diffusion)
 - less affected by slippage-induced temporal averaging
 - ➢ significantly higher overall growth rate
- Expectation is LCLS will have nearly-full transverse coherence by $z/L_{SAT} \sim 0.8$
- Far-field profile generally extremely smooth
 - less contamination by spontaneous emission
 - Fundamental mode quickly dominates on-axis emission

Linear FAST simulation, analytic results show contribution of high order modes

Near-Field Radiation Intensity vs. Z

GENESIS LCLS SASE run / 2004 lattice & beam parameters / courtesy S. Reiche

WM Fawley – Properties of Coherent LCLS FEL Emission

Axisymmetric Intensity Profiles

Output Inten. Profile at Z=116.28 m

Avg FAR FIELD Intensity at Z=116.3m

GINGER LCLS S2E run; Temporal interval = (-27,-15) fs Saturation @z~90 m Most radiation contained within r=50µm Far-field mode size ~1µrad

Projected Far-Field Intensity vs. Z

GENESIS LCLS SASE run / 2004 lattice & beam parameters / courtesy S. Reiche

WM Fawley – Properties of Coherent LCLS FEL Emission Accelerator and Fusion

CXTR from microbunching may provide useful early-z diagnostic

- Until z ≥ 25 m (~5 gain lengths), spontaneous emission (SE) typically is stronger than coherent FEL emission (esp. in near-field)
- Unlike SE, incoherent microbunching constant with z
 => coherent FEL microbunching becomes obvious much more rapidly in z than does FEL radiation
- Spectrally-resolved coherent x-ray transition radiation (CXTR) from coherent microbunching dominates incoherent component after ~3-4 gain lengths
- A. Lumpkin (ANL) has analyzed expected CXTR, proposes to exploit off-axis emission properties to separate it spectrally from intense SE background (which off-axis is red-shifted) (see his contribution to *LCLS-TN-04-2*)

Far-Field and Microbunching Spectra vs. Z

WM Fawley – Properties of Coherent LCLS FEL Emission

Summary

- SASE growth with *z* is exponential
 - relative contrast to spontaneous emission increases with z
 - Growth rate, P_{SAT} , z_{SAT} , and central λ can vary along pulse
- Inverse spectral bandwidth, longitudinal and transverse coherence all increase with *z*.
 - Far field radiation tends to be far "cleaner" in terms of relative contrast to spontaneous emission
 - Averaged over the full 200+ fs, the LCLS pulse will have good shot-to-shot repeatability but any 1-fs portion will have large shot-to-shot variation (see next two talks!)
- A spectrally-resolved microbunching diagnostic may be very useful in measuring coherent FEL emission at early *z*

