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Talk Outline
• Basic “steady-state” FEL amplifier physics

– instability mechanism, gain curve and “FEL parameter” ρ, 
sensitivity to e-beam parameters

• Basic “time-dependent” (polychromatic) amplifier physics
– “fast” time-variations arising from shot noise initiation
– “slow” time variations arising from e-beam temporal variations 

(i.e. current, energy-spread, emittance)
– realistic start-to-end e-beam input to undulator and expected FEL 

output properties
– growth of longitudinal and transverse coherence with z

• Diagnostic separation of coherent (FEL) and incoherent 
(spontaneous emission) microbunching components
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FEL Instability

• Resonance: radiation advances (relative to e-beam) one 
x-ray wavelength per undulator wavelength:

• FEL instability arises from microbunching and 
synchrotron-like rotation of e- in  radiation+undulator 
ponderomotive wells

microbunching           radiation         sinusoidal energy gain/loss

• Requirement for high gain: high current, low δγ and ε
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• For sufficiently high currents and long undulators, 
instability grows exponentially with

• FEL (Pierce) parameter ρ sets many FEL characteristics:

– Saturation length LSAT ~ λu /ρ ∼ 18 LGAIN

– Saturated power  PSAT ~ ρ Pbeam

– Normalized RMS bandwidth  ∆ω/ω0 ~ ρ (LSAT /  z)1/2

• For LCLS, ρ ~ 4E-4, LGAIN ~  4-5m, LSAT ~ 70-100 m,
PSAT ~ 25 GW

Microbunching, radiation grow 
exponentially with z
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SASE FEL “Topography” 
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Exponential gain regime; 
fundamental spatial mode 

becomes dominant; temporal 
coherence steadily grows with z 
while frequency content narrows Saturation regime; temporal 

coherence reaches maximum, then 
decreases with z; peak of emission 
moves redward (untapered wiggler); 
strong coherent harmonic emission

Startup regime; spontaneous emission linearly 
increasing with z; initially no temporal/spatial 
coherence           significant high order spatial 
modes and broadband frequency content
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Temporal Variation Topology

Possible high 
repeatabilit y (depends 
on inj ector, accelerator, 
& compressor)

None locally (spike 
posit ion, phase 
completely random); <P> 
~ constant

Shot -to-Shot  
Repeatabilit y

Possible slow chirp in 
cent ral λ

Relat ively broadband, 
“ spiky”  output

Effect  on Output  
Power

Slow (mult i-fs) variat ion 
in Psat ,  zsat ,  cent ral λ

“ Spiky”  output ; low 
long. coherence (sub-fs)

Effect  on Output  
Power

“ Slow”  e-beam 
variat ions (IB, γ, δγ, ε, 
<x> , <y>, <x’>, <y’>);  
CSR & wake effects

Microbunching from 
e-beam shot  noise

Source

SlowFast  Property
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1-nC --- NO CSR1-nC LCLS:  E-beam at undulator entrance
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Predicted Output Power versus Time

2003 S2E parameters; GINGER simulat ion of full LCLS pulse with 12-as 
resolut ion; SASE results at  output  (120 m); t ime-steady result  for max power 
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“Local” P(t) Snapshots –
“fast” time variation



GINGER “standard”  LCLS example of noise 
-> organized start-up -> exponential gain

Total power shows 
development  into 
spikes by z~10 m

Normalized power 
shows self-similar 
spike propagat ion 
[c –vG ]~ 2/ 3 vslip

Norm. bunching 
shows self-similar 
spike propagat ion
at  vG > 〈vz〉

On-axis far f ield 
radiat ion sub-c
spike propagat ion 
evident  earlier in z



WM Fawley –Propert ies of Coherent  LCLS FEL Emission Accelerat or and Fusion Research Division

Development of Longitudinal Coherence

• In exponential gain regime, τc steadily increases as ¹z
– For SASE, τc ~ 0 at z=0
– Due to slippage and gain narrowing, τc increases 

(some individual temporal spikes exponentially grow 
and widen in time)

• Maximum τc reached 1-2 gain lengths before initial 
SASE power saturation
– Beyond saturation, τc decreases (and ∆ω/ω0 increases) due to 

radiation emission to redward portion of spectrum (λ shift 
due to particle energy loss and sideband-like spectral chirp 
across intense radiation spikes)

• Nonlinear harmonic emission can be strong near 
saturation --- possibly useful diagnostic
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Growth of Longitudinal Coherence

“ Start -to-End”  LCLS
- 2003 undulator layout
- Emma Parmela-ELEGANT 

macropart icle input  to 
GINGER FEL code

- 12 as slice resolut ion
- Coherence t ime τc def ined 

by A(τc)/ A(0) = 0.5
- Radiat ion τc determined 

from on-axis far f ield
- Microbunching τc deter-

mined using full radial 
averaging of part icle phase
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Radiation Spectrum Development

0.15250.1515

2003 S2E LCLS parameters; full 200-fs pulse; 
presumed 120 Hz rep rate; GINGER simulat ion

LINEAR SEMILOG
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Development of Transverse Coherence

• Lowest order, axisymmetric mode strongly favored
– less affected by diffractive losses
– less affected by particle betatron motion (i.e. diffusion)
– less affected by slippage-induced temporal averaging
¾ significantly higher overall growth rate

• Expectation is LCLS will have nearly-full transverse 
coherence by z/LSAT ~  0.8

• Far-field profile generally extremely smooth
– less contamination by spontaneous emission
– Fundamental mode quickly dominates on-axis emission



Linear FAST simulation, analytic results 
show contribution of high order modes
Results from Saldin et  al . ,  Opt .

Comm. 186 (2000), 1895.
- no energy spread or emit tance, 

LG/ ZR=1, 7 x 107 e- /  λs
- 3D linearized code FAST

Radiat ion power vs z in gain 
lengths for 3 lowest  azimuthal 
modes (each again summed 
over lowest  3 radial modes); 
lines=t heory;  dots=simulat ion

Transverse radiat ion prof iles 
across 1 temporal radiat ion 
slice at  z/ LG=5 and 10

Courtesy M. Yurkov
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Near-Field Radiation Intensity vs. Z
15m 25m

45m 75m35m

± 125µm

±
12

5µ
m

GENESIS LCLS SASE run /  2004 lat t ice & beam parameters /  courtesy S. Reiche
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Axisymmetric Intensity Profiles

GINGER LCLS S2E run; 
Temporal interval = (-27,-15) fs
Saturat ion @ z~90 m 
Most  radiat ion contained within r=50µm
Far-f ield mode size ~1µrad

1µrad

50µm
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Projected Far-Field Intensity vs. Z
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GENESIS LCLS SASE run /  2004 lat t ice & beam parameters /  courtesy S. Reiche
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CXTR from microbunching may 
provide useful early-z diagnostic

• Unt il z � 25 m (~5 gain lengths), spontaneous emission 
(SE) typically is st ronger than coherent  FEL emission 
(esp. in near-f ield)

• Unlike SE, incoherent  microbunching constant  with z 
=> coherent  FEL microbunching becomes obvious much 
more rapidly in z than does FEL radiat ion

• Spect rally-resolved coherent  x-ray t ransit ion radiat ion
(CXTR) from coherent  microbunching dominates 
incoherent  component  after ~3-4 gain lengths

• A. Lumpkin (ANL) has analyzed expected CXTR, proposes 
to exploit  off-axis emission propert ies to separate it  
spect rally from intense SE background (which off-axis is 
red-shif ted) (see his cont ribut ion to LCLS-TN-04-2)
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Far-Field and Microbunching Spectra vs. Z
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Summary

• SASE growth with z is exponential
– relative contrast to spontaneous emission increases with z
– Growth rate, PSAT , zSAT , and central λ can vary along pulse

• Inverse spectral bandwidth, longitudinal and transverse 
coherence all increase with z
– Far field radiation tends to be far “ cleaner”  in terms of 

relative contrast to spontaneous emission
– Averaged over the full 200+ fs, the LCLS pulse will have 

good shot-to-shot repeatability but any 1-fs portion will have 
large shot-to-shot variation (see next two talks!)

• A spectrally-resolved microbunching diagnostic may 
be very useful in measuring coherent FEL emission at 
early z


