Nanoscale Dynamics in Condensed Matter

Brian Stephenson, Materials Science Division, Argonne National Laboratory
Steven Dierker, Department of Physics, University of Michigan
Simon Mochrie, Department of Physics, Yale University
Keith Nelson, Department of Chemistry, Massachusetts Institute of Technology
Giancarlo Ruocco, Dipartimento di Fisica, Università di L’Aquila
Dieter Schneider, Lawrence Livermore National Laboratory
Francesco Sette, European Synchrotron Radiation Source
Sunil Sinha, Advanced Photon Source, Argonne National Laboratory
Mark Sutton, Department of Physics, McGill University
Why is Nanoscale Important in Dynamics?

→ Often determines mechanism of dynamics during materials processing

Misfit-Strain-Induced Domain Walls in Ferroelectric Thin Film

Magnetically-Induced Inversion Domain Wall in Nematic Liquid Crystal

C.M. Foster et al., J. Applied Physics 81, 2349 (1997)

Can be difficult to image during processing
Atomic- and nano-scale (<100nm) of great importance in dynamics
- Basic dynamic processes occur at atomic scale
- Overall dynamics mediated by defects and collective mechanisms at the nanoscale

Would like to observe equilibrium dynamics:
- Non-equilibrium mechanisms are typically based on microscopic processes which occur, and are simpler to understand, at equilibrium
- Many useful properties are inherently dynamic
To understand dynamics, need *in-situ* techniques which resolve both *length* and *time*

Determining nature of rate-limiting step from wavenumber \((Q)\) dependence of rate:

\[
\text{Rate } \propto Q^2 : \\
\text{e.g. composition change by diffusion} \\
\text{(conserved quantity)}
\]

\[
\text{Rate indep. of } Q : \\
\text{e.g. deformation by viscous flow} \\
\text{(non-conserved quantity)}
\]
Scattering Techniques for Equilibrium Dynamics

Existing techniques

Probe thermal fluctuations:

- Visible
- Raman Scattering
- Visible Brillouin Scattering
- Visible Photon Correlation Spectroscopy

Excite and probe fluctuations:

- Inelastic Scattering: X-ray, Neutron
- Visible Transient Grating Spectroscopy
Scattering Techniques for Equilibrium Dynamics

XPCS and XTGS

Probe thermal fluctuations:

Excite and probe fluctuations:
Example: Test of Reptation Model

Dynamics of Long-Chain Polymers

Neutron spin-echo has been used to observe Rouse motions.

\[\tau \propto Q^{-3} \]

\(\tau = \) "disentanglement time"

Independent of \(Q \)

XPCS at LCLS would allow test of reptation model.
Experiment 1: X-ray Photon Correlation Spectroscopy (XPCS)

In milliseconds - seconds range:
Uses high average brilliance

transversely coherent X-ray beam from LCLS

monochromator

sample

\[g_2(\Delta t) \equiv \frac{\langle I(t) I(t + \Delta t) \rangle}{\langle I \rangle^2} \]

\[\tau^{-1}(Q) = \text{Rate}(Q) \]

"movie" of speckle recorded by CCD

\[I(Q, t) \]
Experiment 2: XPCS Using Split Pulse

In picoseconds - nanoseconds range:
Uses high peak brilliance

transversely coherent X-ray pulse from LCLS

variable delay Δt

splitter

sample

sum of speckle patterns from prompt and delayed pulses recorded on CCD

$I(Q, \Delta t)$

Analyze contrast as $f(d)$elay time

$10 \text{ ps} \Leftrightarrow 3 \text{ mm}$

Contrast

Δt
Experiment 3:
X-Ray Transient Grating Spectroscopy

In **picoseconds - nanoseconds** range:
Uses high peak intensity

X-ray pulse from LCLS

\[\alpha = 0.1 - 10^\circ \]
\[Q = 0.05 - 5 \text{nm}^{-1} \]

\[S(Q, \Delta t) \]

Drive system with chosen Q, observe response as \(f(\text{delay time}) \)
Is there enough signal from a single LCLS pulse?
Is sample heating by x-ray beam a problem?

Available photons per pulse:

\[N_{AVAIL} = f(E, \Delta E, A) \]

Minimum photons per pulse to give sufficient signal:

\[N_{MIN} = \frac{2 \pi A E^2 \sigma_{abs}}{h c^2 \sigma_{el} M_{corr}} N_{SPECKLE}^{MIN} \]

Maximum photons per pulse to give \(1^\circ\) temperature rise:

\[N_{MAX} = \frac{3 k_B A}{E \sigma_{abs}} \Delta T_{MAX} \]
• **Simple Liquids** – Transition from the hydrodynamic to the kinetic regime.

• **Complex Liquids** – Effect of the local structure on the collective dynamics.

• **Polymers** – Entanglement and reptative dynamics.

• **Glasses** – Vibrational and relaxational modes in the mesoscopic space-time region.

• **Dynamic Critical Phenomena** – Order fluctuations in alloys, liquid crystals, *etc.*

• **Charge Density Waves** – Direct observation of sliding dynamics.

• **Quasicrystals** – Nature of phason and phonon dynamics.

• **Surfaces** – Dynamics of adatoms, islands, and steps during growth and etching.

• **Defects in Crystals** – Diffusion, dislocation glide, domain dynamics.

• **Ferroelectrics** – Order-disorder *vs.* displacive nature; correlations and size effects.