The structure of molybdenum and tungsten enzyme active sites from X-ray absorption spectroscopy

or What use is EXAFS if we know the crystal structure?

Graham N. George

Stanford Synchrotron Radiation Laboratory
Acknowledgments:

Collaborators -

Ingrid Pickering, Eileen Yu, *SSRL*

K.V. Rajagopalan, *Duke University*

Carrie Temple,

Kimberly Johnson,

James Hilton,

Bob Garrett.

Financial Support -

NIH, DOE OBER
Overview

1. Introduction to the Molybdenum and Tungsten Enzymes.

2. X-ray absorption spectroscopy.

3. Formaldehyde Ferredoxin oxidoreductase.

4. DMSO reductase active site structure.

5. Conclusions.
The Stanford Linear Accelerator Center
The Stanford Synchrotron Radiation Laboratory
The Stanford Synchrotron Radiation Laboratory
Molybdenum and Tungsten Enzymes.

- Mo and W are the only second and third period transition elements with well defined biological functions.
- In most (but not all cases) they catalyze two-electron redox reactions involving the transfer of an oxygen from the metal to the substrate, or the reverse reaction.

\[
(\text{Enzyme})^-\text{Mo}^{VI} \sim\text{O} + \text{R} \leftrightarrow (\text{Enzyme})^-\text{Mo}^{IV} + \text{R}\sim\text{O}
\]

Examples:

DMSO reductase

\[
(\text{Enzyme})^-\text{Mo}^{IV} + (\text{CH}_3)_2\text{S}=\text{O} \rightarrow (\text{Enzyme})^-\text{Mo}^{VI}=\text{O} + (\text{CH}_3)_2\text{S}
\]

\[
(\text{Enzyme})^-\text{Mo}^{VI}=\text{O} + 2\text{e}^- + 2\text{H}^+ \rightarrow (\text{Enzyme})^-\text{Mo}^{IV} + \text{H}_2\text{O}
\]

Xanthine oxidase

\[
(\text{Enzyme})^-\text{Mo}^{VI}=\text{OH}_2 + \text{R}^-\text{H} \rightarrow (\text{Enzyme})^-\text{Mo}^{IV} + \text{R}^-\text{OH} + 2\text{H}^+
\]

\[
(\text{Enzyme})^-\text{Mo}^{IV} + \text{H}_2\text{O} \rightarrow (\text{Enzyme})^-\text{Mo}^{VI}=\text{OH}_2 + 2\text{e}^-
\]
Molybdenum and Tungsten Enzymes.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>metal</th>
<th>mpt</th>
<th>Reaction</th>
<th>Crystal structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo-containing Hydroxylases:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthine Oxidase</td>
<td>Mo</td>
<td>1</td>
<td>$\text{RH} + \text{H}_2\text{O} \rightarrow \text{ROH} + 2\text{H}^+ + 2\text{e}^-$</td>
<td>×</td>
</tr>
<tr>
<td>Xanthine Dehydrogenase</td>
<td>Mo</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purine Hydroxylase</td>
<td>Mo</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehyde Oxidase</td>
<td>Mo</td>
<td>1</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Nitrate Reductases:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>Mo</td>
<td>2</td>
<td>$\text{NO}_3^- + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{NO}_2^- + 2\text{H}_2\text{O}$</td>
<td>×</td>
</tr>
<tr>
<td>Assimilatory</td>
<td>Mo</td>
<td>1</td>
<td>$\text{SO}_3^{2-} + 2\text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 2\text{H}^+ + 2\text{e}^-$</td>
<td>×</td>
</tr>
<tr>
<td>Sulfite Oxidase</td>
<td>Mo</td>
<td>1</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Formate Dehydrogenase</td>
<td>Mo</td>
<td>2</td>
<td>$\text{HCOO}^- \rightarrow \text{CO}_2 + \text{H}^+ + 2\text{e}^-$</td>
<td>×</td>
</tr>
<tr>
<td>Carbon Monoxide Oxidase</td>
<td>Mo</td>
<td>1</td>
<td>$\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2\text{H}^+ + 2\text{e}^-$</td>
<td>×</td>
</tr>
<tr>
<td>Biotin Sulfoxide Reductase</td>
<td>Mo</td>
<td>2</td>
<td>$\text{Biotin-S}=\text{O} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Biotin-S} + \text{H}_2\text{O}$</td>
<td></td>
</tr>
<tr>
<td>DMSO Reductase</td>
<td>Mo</td>
<td>2</td>
<td>$(\text{CH}_3)_2\text{S}=\text{O} + 2\text{H}^+ + 2\text{e}^- \rightarrow (\text{CH}_3)_2\text{S} + \text{H}_2\text{O}$</td>
<td>×</td>
</tr>
<tr>
<td>Tetrathionate Reductase</td>
<td>Mo</td>
<td>2</td>
<td>$\text{S}_4\text{O}_6^{2-} + 2\text{e}^- \rightarrow 2\text{S}_2\text{O}_3^{2-}$</td>
<td></td>
</tr>
<tr>
<td>Trimethylamine N-oxide Reductase</td>
<td>Mo</td>
<td>2</td>
<td>$(\text{CH}_3)_3\text{N}=\text{O} + 2\text{H}^+ + 2\text{e}^- \rightarrow (\text{CH}_3)_3\text{N} + \text{H}_2\text{O}$</td>
<td>×</td>
</tr>
<tr>
<td>Arsenite Oxidase</td>
<td>Mo</td>
<td>2</td>
<td>$\text{H}_3\text{AsO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{AsO}_4^- + 3\text{H}^+ + 2\text{e}^-$</td>
<td>×</td>
</tr>
<tr>
<td>Aldehyde ferredoxin oxidoreductase</td>
<td>W</td>
<td>2</td>
<td>$\text{RH} + \text{H}_2\text{O} \rightarrow \text{ROH} + 2\text{H}^+ + 2\text{e}^-$</td>
<td>×</td>
</tr>
<tr>
<td>Formaldehyde ferredoxin oxidoreductase</td>
<td>W</td>
<td>2</td>
<td>$\text{HCHO} + \text{H}_2\text{O} \rightarrow \text{HCOOH} + 2\text{e}^- + 2\text{H}^+$</td>
<td>×</td>
</tr>
</tbody>
</table>
Molybdenum and Tungsten Enzymes.

- Mo and W enzymes share a common "molybdopterin" cofactor.

- One or two cofactors are present, depending on the enzyme.
Alcaligenes fcalis arsenite oxidase crystal structure

Alcaligenes fecalis arsenite oxidase active site crystal structure

What is X-ray Absorption Spectroscopy?

- Scan the energy (wavelength) of an X-ray beam; monitor the absorption of X-rays by a sample as a function of incident X-ray energy.

\[
\text{Absorbance} = \log_e \left(\frac{I_0}{I_1} \right)
\]
X-ray Absorption Spectroscopy - Basic Physics.

- X-ray Absorption Spectra arise from ejection of a core electron.

(a) not enough energy to eject a core electron

(c) Just enough X-ray energy to eject a core electron: a low energy photo-electron is generated (long DeBroglie λ).

(b) "threshold" or absorption-edge X-ray energy, E_0

(d) core electron easily ejected: a higher energy photo-electron is generated (short DeBroglie λ).

EXAFS

EXAFS = Extended X-ray Absorption Fine Structure

Graham N. George
EXAFS - Basic Physics.

- EXAFS can be thought of as arising from interference between outgoing and backscattered DeBroglie photo-electron waves.

 Schematic diagram of the final-state wave function used to calculate the EXAFS

 - The absorption μ is a maximum when the backscattered wave is in phase with the outgoing wave at the absorber (constructive interference).
 - The absorption μ is a minimum when the backscattered wave is out of phase with the outgoing wave (destructive interference).
 - As the X-ray energy E increases, the DeBroglie wavelength decreases and the observed EXAFS oscillations are due to successive periods of constructive and destructive interference.
EXAFS Data Reduction Methods - the Fourier transform.

The EXAFS Fourier transform of \([\{(C_6H_5)_4As\}]Cl\).

The different contributions to the EXAFS can be clearly seen as Fourier transform peaks approximately at a distance corresponding to the atomic separation. The Fourier transform has been phase-corrected for carbon back-scattering.
Structural parameters that are available from EXAFS analysis:

- Average bond-lengths, R
- Coordination Numbers, N
- Debye-Waller factors, σ^2

σ^2 is the mean-square displacement of the bond-length from the average value R. It has components from atomic vibration and disorder. Debye-Waller factors can be thought of as being similar to a crystallographic temperature factor. They are different in that they are due to relative displacements of atoms.

- Geometric information is generally not available. Sometimes the presence of *multiple scattering* allows bond-angle determination.
X-ray Absorption Spectroscopy – Strengths and Limitations:

- **Near-edge spectra are sensitive to oxidation state.**

- **Very accurate values for bond-lengths.**
 Bond lengths are typically determined with an accuracy of better than ±0.02 Å. Precisions are smaller than this, and normally reflect the accuracy.

- **Bond-length resolution is poor.**
 For similar scatterers (e.g. two different Mo–S) this is governed by the k–range of the data. The resolution limit $\Delta R \approx \pi/2k$, where k is the extent of the data in Å$^{-1}$, and for a typical data set ΔR will be in the range 0.10 – 0.15 Å.

- **Coordination numbers are only moderately well determined.**
 Coordination numbers and Debye-Waller factors are determined to ca. ±25%. The uncertainty arises mostly from their high mutual correlation in the curve-fitting analysis.

- **EXAFS of mixtures provides an average radial structure.**
 This is both a limitation and a strength. It is a limitation when compared to techniques such as EPR which is very good at resolving mixtures.

- **EXAFS analysis can sometimes be problematic.**
Complementing Protein Crystallography with XAS.

A comparison of EXAFS Fourier transforms computed using crystallographic data and experimental EXAFS.

A: A low molecular weight complex, for which the structure is accurately known from crystallography. The computed EXAFS and the experimental data are in excellent agreement.

B: A molybdenum enzyme (*E. coli* formate dehydrogenase), solved to 2.8 Å resolution vs. a solution of (apparently) the same form of the enzyme. There is considerable discrepancy between experimental and computed EXAFS Fourier transforms.
Experimental Aspects:

A typical X-ray Absorption Spectroscopy experiment on SSRL’s beamline 6-2. The setup shown uses a low-temperature liquid helium cryostat, a Canberra 13 element Germanium X-ray fluorescence detector (on the left) and a Stern-Heald-Lytle X-ray fluorescence detector (right hand side). The X-ray beam enters the experiment from the beampipe on the right hand side of the photograph, and exits at the bottom left of the picture.
Pyrococcus furiosus Formaldehyde Ferredoxin Oxidoreductase.

- Catalyses the two-electron oxidation of formaldehyde to formate:
 \[\text{HCHO} + \text{H}_2\text{O} \rightarrow \text{HCOOH} + 2e^- + 2\text{H}^+ \]
- Contains two molybdopterin cofactors, plus one Fe$_4$S$_4$ cluster.

Pyrococcus furiosus Formaldehyde Ferredoxin Oxidoreductase.

- 1.85 Å active site crystal structure

- 1 W–O at 2.1 Å, 4 W–S at 2.5 Å

- *Van der Waals radius of active site oxygen overlaps with one sulfur.*

- *Unusual asymmetric geometry around the tungsten.*

- *Un-assigned electron density present on one site of tungsten.*
Pyrococcus furiosus Formaldehyde Ferredoxin Oxidoreductase

Perspective from EXAFS.

Anaerobically isolated oxidized enzyme.

- **EXAFS unambiguously indicates a dioxo** W^{VI} **active site.**
DMSO reductase - published active site crystal structures prior to 2000

3. McAlpine, A. S.; McEwan, A. G.; Shaw, A. L.; Bailey, S.

4. McAlpine, A. S.; McEwan, A. G.; Bailey, S.

- All structures have nearly identical polypeptide folds.
- All have totally different molybdenum active site structures.
DMSO reductase - published active site crystal structures:

- **Oxidized Mo**\(^{VI}\) **DMSO reductase**

 The different crystal structures suggest different active site structures.

 A mono-oxo 5 coordinate Mo site with one pterin dithiolene coordinated, and the other bound by only one sulfur.
DMSO reductase - published active site crystal structures:

- **Oxidized Mo\(^{VI}\) DMSO reductase**

 The different crystal structures suggest different active site structures.

 A di-oxo 5-coordinate Mo site with one pterin dithiolene coordinated.
DMSO reductase - published active site crystal structures:

- Oxidized MoVI DMSO reductase

The different crystal structures suggest different active site structures.

A di-oxo 7-coordinate Mo site with both pterin dithiolenes bound.
DMSO reductase - published active site crystal structures:

- **All** reported crystal structures contain some chemically unexpected features.
- *e.g.* 7-coordinate oxidized DMSO reductase structure:

The proposed enzyme active site structure contains several supposedly non-bonded atoms with overlapping Van der Waals radii (shown as wire-frame spheres).
Di-oxo Molybdenum (VI) bond angles

- Very extensive chemical literature indicates that a typical O=Mo=O angle is 106°.
- There are no reported small molecule structures for which this angle is less than 95°.

The O=Mo=O angle in MoO$_2$(tetra-p-tolylporphrinate) is 95.1° [3]. It is a highly strained structure, as illustrated by the large deviations of the porphyrin ring from planarity.

- Values reported from protein crystallography of 80° for TMAO reductase [1] and 70° for DMSO reductase [2] are chemically unexpected.

DMSO reductase active site structure - the perspective from EXAFS.

DMSO reductase active site structure - the perspective from EXAFS.

- **No reported crystal structures are in agreement with the XAS analysis.**

- **Resonance Raman spectroscopy supports the XAS structures.**

- **Mo(V) EPR spectroscopy (\(^{17}\)O labeling) supports the XAS structures.**
DMSO reductase active site structure - the perspective from EXAFS.

- The recombinant as-isolated enzyme is different from the oxidized wild type. It is changed to a form identical to the wild-type by a cycle of reduction and re-oxidation, called "redox conditioning".

Graham N. George
Crystallography of mixtures provides an average picture:

- With small molecule crystallography fractional occupancy of sites would in most cases be detectable, but with proteins this might not be the case.

- With EXAFS usually just the radial structure is detected. With a mixture of similar species the correct number and (probably) the type of ligands should be determined.
X-ray photo-reduction

- Intense synchrotron X-ray beams can photo-reduce, or sometimes photo-oxidize samples.
- With XAS this is easy to see as the near-edge spectrum shifts.

With crystallography photo-reduction is more difficult to see.
- With crystallographic experiments the sample typically receives ~300 fold greater dose of X-rays than with EXAFS.
- The metal oxidation state can be uncertain in crystallographic data sets.
EXAFS vs. Protein Crystallography

- For directly coordinated ligands to a metal EXAFS can be more accurate than protein crystallography.
- EXAFS accuracy is generally better than ± 0.02 Å
- Protein crystallography accuracy ± 0.3 Å

Mo=O bond-length 1.74 Å, thermal factor for both Mo and O assumed to be 10 Å²
Crystallographic Refinement

The R-value is used as an index of accuracy of the structure.

- dates from the pre-computer era.

\[
R = \frac{\sum |F_o(h) - F_c(h)|}{\sum |F_o(h)|}
\]

- For small molecules a typical R would be about 0.02, for proteins R is almost never less than about 0.15, with a more typical value of about 0.25.

$F_o(h)$ – Observed structure factor.

$F_c(h)$ – Calculated structure factor from the current model.
Crystallographic Refinement

What exactly is refined in a protein crystal structure refinement?

\[R' = \sum_{all \ h} (F_o(h) - F_c(h))^2 + \sum_{all \ g} (g_o - g_c)^2 \]

- \(F_o(h) \) – Observed structure factor.
- \(F_c(h) \) – Calculated structure factor from the current model.
- \(g_c \) – Calculated value of a geometrical parameter (e.g. a bond length) in the current model.
- \(g_o \) – Value of the same geometrical parameter as determined in small molecule crystal structures.

- If restraints are not used then unreasonable geometries can be obtained.
- If restraints are used then the crystal structure solution is biased towards the values of the restraints.
DMSO reductase active site structure

Recently a 1.3 Å crystal structure of *Rhodobacter sphaeroides* DMSO reductase shows a mixture of two different structures in the crystal.

Li, H-K.; Temple, C.; Rajagopalan, K.V.; Schindelin, H. *J. Am. Chem. Soc.* 2000, 122, 7673-7680. This study confirms our previous conclusion that earlier crystallographic analysis of the active site are in error.
DMSO reductase active site structure

- *Crystal Structure of mixture component B is very similar to that derived from EXAFS*

But - The new structure still contains chemically unreasonable features!

Non-bonded atoms (serine O and molybdopterin S) have overlapping Van der Waals radii (shown as wire-frame spheres).
DMSO reductase - published active site crystal structure of DMS-reduced form.

The proposed enzyme active site structure contains several supposedly non-bonded atoms with overlapping Van der Waals radii.

- Crystallography indicates an unusually long Me₂S=O bond (1.7 vs. 1.4 Å).
- EXAFS cannot detect the distant sulfur from DMSO.
DMSO reductase forms a substrate complex with trimethylarsine.

- Me_2S and Me_3As form complexes with very similar UV-visible spectra.
- Both are Mo(V) EPR silent
- Both form with near-stoichiometric enzyme and $\text{Me}_3\text{As} / \text{Me}_2\text{S}$.

- Near-edge spectra indicate Mo is reduced, and As is oxidized.
Trimethylarsine reduced DMSO reductase:

- Mo and As K-edge EXAFS give a detailed active site structure.
Trimethylarsine reduced DMSO reductase:

- Mo and As K near-edge spectra indicate Mo^{IV} and As^V oxidation states.
- Mo and As K-edge EXAFS indicate no unusual structural features.
- The unusually short $\text{Me}_2\text{S}=\text{O}$ bond in the crystal structure of DMS-reduced enzyme may be an artifact.
Conclusion: What use is EXAFS if we know the crystal structure?

Without spectroscopy our view of the DMSO reductase active site would be very different.

- The conclusions from earlier spectroscopic studies were mostly ignored in the first crystal structure studies.
- Protein crystallography refinement alone did not provide accurate active site structures.
- To obtain an accurate structural picture the crystallography needed to be supplemented by spectroscopic information (i.e. from EXAFS, EPR and Resonance Raman).

- Caveat: One EXAFS study analyzed their data starting from the crystallographic results. This work yeilded an erroneous interpretation with physically unreasonable Debye-Waller factors.