Skip to: main navigation | content

SLAC National Accelerator Laboratory

Radioactive Materials at SSRL

Contact Information

SSRL Safety Officer (650) 926-3861
SSRL Radiation Protection Group (650) 926-4299
RADMAT@SLAC.STANFORD.EDU

Throughout the course of an SSRL Experimental Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other materials. There is no de minimus quantity for declaring the use of radioactive samples at SSRL. The purpose of this procedure is to enable Users, SSRL and SLAC staff to know what radiological controls will be implemented for these materials, based on the isotope, its toxicity risk and radiological controls. Radioactive materials at SSRL are classified into 4 classification Groups based on the radiotoxicity tables, see below.

No Letters of Intent (LOI's) or rapid access applications will be accepted for experiments involving radioactive materials. Experiments that wish to use radioactive materials must go through the normal SSRL proposal process.

Radiological Controls for the conduct of experiments is contained in a SLAC/SSRL document, SSRL Radioactive Material Experiments Radiological Work Controls SLAC - I - 82B - 00100 - 001, and shall be reviewed by all users.

USER RESPONSIBILITIES / EXPECTATIONS

  • Shall submit notice of intent to use Radioactive Materials online in a timely manner, describing the isotope and activity in the required matrix formatting
  • hall follow all the applicable radiological procedures and postings while running their experiments
  • eport to RPFO and SSRL Safety Staff any unintentional deviations from governing procedure
  • nsures the shipping papers sent with their materials mirror their declarations and accurately reflect the amount of material shipped in both activity and weight amount

Containment of samples

All sample containment/holder designs shall be approved by the Radioactive Material Experiment Program Manager and SSRL Safety Officer. Many containment designs have been previously approved and do not need re-approval. SSRL and Radiation Protection Department reserves the right to review containment/holders previously approved if devices have not been used within the last two years, to ensure that all radiological requirements at SLAC are met. New sample holder designs/changes not shown/approved in the SSRL Radioactive Sample Holders Catalog must be submitted to SSRL's Safety Officer at SSRLRadMat@slac.stanford.edu, for review and approval prior to shipment to SSRL. Allow at least 60 days for approval. Application for holder is located here: Holder Template

Layers of containment: See end of page Radiotoxicity Table 1 for isotope group classifications

  • Very high radiotoxicity (Group 1) and high radiotoxicity (Group 2) are required to have three (3) levels of containment.
  • Moderate radiotoxicity (Group 3) is required to have two (2) levels of containment.
  • Low radiotoxicity (Group 4) is required to have one (1) level of containment.

In the case of a mixture of radionuclides belonging to different radiotoxicity groups, the highest hazard group will be assigned to the mixture of radionuclides.

Any divergence from this protocol requires further review and approval. For questions or assistance with this procedure, call: SSRL Safety Office (650) 926-3861 or SLAC Radiation Protection Field Operations (RPFO) (650) 926-4299

Note: Sample containment is the SLAC/SSRL Approved physical barrier(s) required to be in place that prevent the release of material.

Procedure for Submitting Radioactive Material information to SSRL

At a minimum, thirty (30 day notice authorization) days before the start of the experiment the SSRL Safety Office must be advised of the maximum quantity of radioactive material to be sent , the isotopic composition, and the type of containment design to be utilized. For radioactive materials already on site and inventoried in the RP database, users must submit a 7- day notice (7 day notice authorization).

Users are advised that the maximum quantities listed on the 30-day notice (30 day notice authorization) are binding. This gives SLAC a total upper limit of material onsite and allows time to define and configure its radioactive material storage areas, such that SLAC remains in compliance with standards for a Hazard Category below category III per DOE-STD-1027-92 Change of Notice 1, September 1997.

The users must also be reminded of their responsibility for ensuring the shipping papers sent with their materials mirror their declarations and accurately reflect the amount of material shipped in both activity and weight amount.

Shipments of radioactive materials will not be accepted at SLAC if the shipping papers do not contain the required information. Non-regulated and UN-2910 materials are not required to include in the package container formal shipping papers per IATA/DOT regulations. The 7 and 1day notices will reflect the quantity of radioactive material being sent and the isotopic composition.

NOTE: Do not ship or bring radioactive samples (any amount) to SSRL without receiving written authorization from our Radiation Protection Department. ** International shipments may require additional approvals. Contact SSRL Safety Office or Radiation Protection for additional information.

Shipment and Receipt of Radioactive Material at SSRL

All shipments to SLAC shall have pre-approval from Program Manager or designee and must contain a return authorization number or statement from the Shipper authorizing SLAC to ship the material back. No shipments will be accepted without a proper return authorization. All material will be returned to the origin institution upon termination of the experiments unless the sample material belongs to SSRL.

All hazardous materials, including radioactive materials, shipped to or from SSRL shall be packaged and handled according to U.S. Department of Transport regulations (via highway) or IATA/ICAO Dangerous Goods Regulations (via aircraft or from overseas). Shipments that fail to comply with these federally mandated regulations will be returned to the Users home institution unopened. All radioactive material packages, REGULATED and UNREGULATED, must have a packing slip, affixed to the outside of the package, detailing the radioactive material isotopes amounts and holders in the container and shall be addressed to: SLAC National Accelerator Laboratory, Radiation Protection, Bldg 24/MS84, 2575 Sand Hill Road, Menlo Park, CA 94025. USA, telephone: 650.926.4299.Mark package with user name and proposal number. All shipments of radioactive material, including non-regulated per DOT or IATA, must match the authorization request quantities and characteristics. Also the IATA/ICAO and DOT calculations must be based on the same distributions as declared in the 30-day notice in order to be in compliance.

When sending specification packages (Type A, Type B), the documentation of the package certification must be provided prior to offering the shipment. When received, packages will be checked for damage and surveyed for external radiation and contamination. The radioactive material will be inventoried and then released to its custodian/user for experiments at SSRL. All radioactive material leaving SSRL shall be sent back to the User's home institution by RPFO and the material will be removed from the SSRL Radioactive Material Inventory.

In order to ensure compliance with DOE-STD-1027-92-Change Notice 1, September 1997 tracking, requests for shipment authorization for all radioactive materials shall include the isotopic distribution when applicable. SSRL is strictly limited to the quantities of radioactive material allowed at its facility at any one time. Users must inform the SSRL Safety Office and Radioactive Material Experiment Program Manager of the exact isotopes and quantity of each isotope to be shipped. If shipments arrive at SLAC and the quantity of radioactive material originally specified has been exceeded, samples will be returned to the Users home institution unopened.

Any nano-scale forms of non radioactive material must be shipped in a packing group (PG I) performance tested package even if the DOT or IATA/ICAO limits are not exceeded.

Materials should be delivered to SLAC in their final containment configuration unless otherwise authorized. Material containment is the SLAC/SSRL approved physical barrier(s) required to be in place to prevent the release of material.

At a minimum, 7 days before the start of the experiment, a request for shipping approval authorization must be sent to the SSRL Safety Office by use of this form (7 day notice authorization). The quantity of radioactive material to be sent, and its isotopic composition, must be specified.

When the samples are shipped to SSRL, the sample shipping information (1-day notice) should be submitted to the SSRL Safety Office through the web application.

All samples shall be surveyed at your home institution prior to shipment to SLAC, and shall be free of removable contamination.

Also provide with the shipping papers the radioactive material license and radiation safety contact at originating lab for the return of radioactive material.

Appropriate forms can be found at the following web address: http://www-ssrl.slac.stanford.edu/Safety/

The proper shipping address is as follows:
User Name and User Proposal #
SLAC/Radiation Protection Group
2575 Sand Hill Road,
Bldg 024/MS 84
Menlo Park, Ca 94025
USA
(650)926-4299

2. Training

In accordance with 10CFR835, SLAC-Radiological Control Manual and SLAC/SSRL procedures, all individuals working with or around radioactive materials are required to complete a level of training commensurate with the hazards in the area.

The minimum training requirements for personnel handling radioactive material is Radiation Worker Training I (RWT I). General Employee Radiation Worker Training (GERT) trained personnel may be utilized as a Continuous Air Monitoring (CAM) watch or for observing work operations. GERT and RWT I training may be completed at SSRL.

3. Transfer of Radiological Training to SSRL

Training from other US Department of Energy laboratories may be transferred to SLAC with RP approval. Personnel who want to transfer their training qualifications will be required to:

  1. Show proof of previous equivalent training such as certificate and date of training
  2. Review site specific training -SLAC-I-720-0A045-006 latest revision
  3. Review a safety computer based training course (ESH#396)

Users must have documentation of training record with completion date available upon requesting the transfer. Training must have been completed within 2 years. The SSRL User Office may also be able to contact your parent laboratory. However this may delay Users ability to acquire dosimetry. At the completion of this training, Users will be issued a SLAC/SSRL identification badge and dosimeter if applicable.

4. Procedures

All experiments within Radiotoxicity Groups 1, 2, or 3 with radioactive material must have a written procedure identifying the radiological hazards and the mitigation controls or a Radiological Work Permit (RWP). Sample of procedures are available upon request. The document must be approved by the SSRL Safety Officer and the Radioactive Material Experiment Program Manager. A document number will be assigned to a procedure by the SSRL Safety Officer. At the conclusion of the experiment, observations noted during the experiment should get incorporated into the procedure(s) as applicable. Experiments within Radiotoxicity Group 4 will have a one page procedure developed and posted by RPFO at the hutch door.

A sample document is provided here.

5. Sample Preparation

Material should come already prepared. It is anticipated that some Users will request the ability to perform limited sample preparation of radioactive materials during their stay at SSRL. All proposals of this nature are reviewed on a case by case basis and a request should be submitted to the SSRL Safety Officer 30 days in advance. If sample preparation is allowed then the following provisions shall be employed to manage materials and the risks associated with such activities:

  • Protective clothing shall be worn when working with radioactive materials as directed by Health Physics personnel. All sample preparation shall be performed in a glove bag or other enclosed system such as a hood. The bottom of the hood should be covered with an absorbent paper or equivalent in case of a spill or leak. The hood/containment set up shall vent through a HEPA filter, if used.
  • All radioactive material containments shall be surveyed to detect if removable contamination is present, both entering and leaving the glove bag or hood.
  • Health Physics personnel will provide radiological posting for the area with the appropriate caution or warning "Radioactive Material" signs and a contact telephone number. Contamination surveys of the preparation area will be performed daily when in use by Health Physics personnel, to detect if removable contamination is present.
  • All radioactive material, including any contaminated solids (i.e. glove bag, sample holders, wipes etc.) shall be returned to the Users home institution.
  • A survey meter for radiological monitoring will be made available to the User, along with the requisite instructions for its use and operation. It should be used each and every time radioactive materials are handled in the containment set up, to self monitor.

6. Radioactive Materials at SSRL Beam Lines

SSRL has approved the following beam lines for Radioactive Experiment: 2-1, 2-3*, 4-1*, 4-3, 6-2*, 7-2*, 8-2, 10-1, and 10-2*, 11-2*. The latest list containing all beam lines approved for radioactive experiments is posted at SSRL website.

Transuranics elements can only run on the beam lines with *.

Any proposal considering a beam line that is not approved for radioactive experiments or transuranic radionuclides, must submit at least a 90 day notice to SSRL Safety Office. The User shall submit a proposal addressing the radiological hazards present in the experiment, and what controls will be in place to mitigate the hazards.

After materials have been surveyed and inventoried by Health Physics personnel, they will be transferred to the User at SSRL. While at the beam lines, radioactive materials need to be controlled in the following manner:

  1. All radioactive materials are to be labeled as such and have a unique identification number applied by Health Physics personnel.
  2. Radioactive Material not in use shall be stored in either in the beam hutch or designated storage facility.
  3. Beamlines will be posted with appropriate radiological signs by Health Physics personnel.
  4. Transuranic (TRU) materials shall not be left unattended while located within a hutch or vacuum chamber. (EOD - Experimenter on Duty)
  5. All other radioactive materials shall be locked in the hutch/vacuum chamber and the search key returned to the box, should the user need to leave the beam line.
  6. Pre and post experiment contamination surveys of the work area will be performed by Health Physics personnel.
  7. Radioactive samples shall not be removed from beam hutches without a survey conducted by Health Physics personnel

7. Chain of Custody

The Chain of Custody transfers the custody of radioactive material between Health Physics personnel and User. Upon opening radioactive material package(s) at SSRL, a chain of custody tag shall be prepared to follow the sample during the entire time that the sample is at SSRL. When moving radioactive materials between beam line/hutch and the preparation rooms 113-114, or vice versa, a chain of custody tag shall be accompany the sample and requires the user to sign for receipt or disposition of material. The chain of custody should reflect the movement of the sample within SSRL. The chain of custody tag is part of the radiological record to be kept by RPFO.

8. Radiological Controls

Air Monitoring:
Some radioactive materials (Groups 1, 2 alpha emitters) require continuous air monitoring (CAM) while others will require periodic monitoring through a retrospective air sampling. Users may be required to monitor CAM's operations.

Note:
At SSRL, a Continuous Air Monitoring (CAM) system is used to provide personnel with an early warning of a spill or release when applicable. Emergency response procedures for use when using CAM's for experiments will be posted at the beam line.

Radiological Coverage:
RP provides Health Physics Technicians (HPT's). An HPT shall be present anytime radioactive materials are moved from/to preparation rooms and beamline/hutches or between beamline/hutches. HPT shall take contamination surveys prior to the physical movement of radioactive materials outside of a beamline/hutch. Health Physics personnel from other DOE laboratories may also provide radiological coverage upon agreement with the SLAC Radiation Protection Department. HPT coverage outside of regular business hours M-F 7am-5pm should be approved by SSRL Safety Office prior to arrival on site.

Emergency Procedures:
Emergencies associated with these experiments can be divided into two categories: those in which there is a possible or known failure of the sample containment resulting in a local emergency specific to these experiments, and those in which some other event, e.g., fire or earthquake, results in a site-wide emergency and a general site-wide response that may need to be modified because of the potential for contamination. In this latter situation, the experimenters will follow the standard facility procedures (as if there were no radioactive materials involved), with the exception that, in the case of transuranics, if it entails no additional risk or hazard to the experimenters, they should take some minimal actions to decrease the possibility of contamination from the experiment.

Template procedures with emergency instructions can be found at the link below: SSRL Template Procedures

RADIOTOXICITY TABLE I

Very High Radiotoxicity (Group 1)

210 Pb

228 Ra

229 Th

232 U

236 Pu

241 Pu

243 Am

244 Cm

248 Cm

251 Cf

210 Po

227 Ac

230 Th

233 U

238 Pu

242 Pu

240 Cm

245 Cm

248 Cf

252 Cf

223 Ra

227 Th

231 Pa

234 U

239 Pu

241 Am

242 Cm

246 Cm

249 Cf

254 Cf

225 Ra

228 Th

230 U

237 Np

240 Pu

242mAm

243 Cm

247 Cm

250 Cf

254 Es

226 Ra

 

 

 

 

 

 

 

 

255Es

High Radiotoxicity (Group 2)

22 Na

90 Sr

110m Ag

124 I

140 Ba

170 Tm

212 Pb

228 Ac

242 Am

253 Es

36 Cl

91 Y

115m Cd

125 I

144 Ce

181 Hf

207 Bi

232 Th

241 Cm

254m Es

45 Ca

93 Zr

114m In

126 I

152 Eu(13a)

182 Ta

210 Bi

230 Pa

249 Bk

255 Fm

46 Sc

94 Nb

124 Sb

131 I

154 Eu

192 Ir

211 At

236 U

246 Cf

256 Fm

60 Co

106 Ru

125 Sb

134 Cs

160 Tb

204 Tl

224 Ra

244 Pu

253 Cf

Th Nat

Moderate Radiotoxicity (Group 3)

7 Be

52 Fe

82 Br

97 Zr

105 Ag

134 Te

143 Ce

171 Tm

198 Au

237 U

14 C

55 Fe

74 Kr

90 Nb

111 Ag

120 I

142 Pr

175 Yb

199 Au

240 U

18 F

59 Fe

77 Kr

93m Nb

109 Cd

123 I

143 Pr

177 Lu

197 Hg

240U+

24 Na

55 Co

87 Kr

95 Nb

115 Cd

130 I

147 Nd

181 W

197m Hg

240 Np

31 Si

56 Co

88 Kr

95m Nb

115m In

132 I

149 Nd

185 W

203 Hg

239 Np

32 P

57 Co

86 Rb

96 Nb

113 Sn

132m I

147 Pm

187 W

200 Tl

234 Pu

33 P

58 Co

83 Sr

90 Mo

125 Sn

133 I

149 Pm

183 Re

201 Tl

237 Pu

35 S

63 Ni

85 Sr

93 Mo

122 Sb

135 I

151 Sm

186 Re

202 Tl

245 Pu

38 Cl

65 Ni

89 Sr

99 Mo

121 Te

135 Xe

153 Sm

188 Re

203 Pb

238 Am

41 Ar

64 Cu

91 Sr

96 Tc

121m Te

132 Cs

152m Eu (9h)

185 Os

206 Bi

240 Am

42 K

65 Zn

92 Sr

97m Tc

123m Te

136 Cs

155 Eu

191 Os

212 Bi

244mAm

43 K

69m Zn

90 Y

97 Tc

125m Te

137 Cs

153 Gd

193 Os

220 Rn

244 Am

47 Ca

72 Ga

92 Y

99 Tc

127m Te

131 Ba

159 Gd

190 Ir

222 Rn

238 Cm

47 Sc

73 As

93 Y

97 Ru

129m Te

140 La

165 Dy

194 Ir

226 Th

250 Bk

48 Sc

74 As

86 Zr

103 Ru

131 Te

134 Ce

166 Dy

191 Pt

231 Th

244 Cf

48 V

76 As

88 Zr

105 Ru

131m Te

135 Ce

166 Ho

193 Pt

234 Th

254 Fm

51 Cr

77 As

89 Zr

105 Rh

132 Te

137m Ce

169 Er

197 Pt

233 Pa

 

52 Mn

75 Se

95 Zr

103 Pd

133m Te

139 Ce

171 Er

196 Au

231 U

 

54 Mn

 

 

109 Pd

 

141 Ce

 

 

 

 

Low Radiotoxicity (Group 4)

3 H

60m Co

81 Kr

91m Y

96m Tc

133 Te

125 Cs

138 Cs

207 Po

243 Pu

15 O

61 Co

83m Kr

88 Nb

99m Tc

120m I

127 Cs

137 Ce

227 Ra

237 Am

37 Ar

62m Co

85m Kr

89 (66m)Nb

103m Rh

121 I

129 Cs

191m Os

235 U

239 Am

51 Mn

59 Ni

85 Kr

89 (122m)Nb

113m In

128 I

130 Cs

193m Pt

238 U

245 Am

52m Mn

69 Zn

80 Sr

97 Nb

116 Te

129 I

131 Cs

197m Pt

239 U

246mAm

53 Mn

71 Ge

81 Sr

98 Nb

123 Te

134 I

134m Cs

203 Po

U nat

246 Am

56 Mn

76 Kr

85m Sr

93m Mo

127 Te

131m Xe

135 Cs

205 Po

235 Pu

249 Cm

58m Co

79 Kr

87m Sr

101 Mo

129 Te

133 Xe

135m Cs

 

 

 

  1. Radionuclides not included in Table I shall, where necessary, be assigned to a toxicity group by the Radioactive Material Experiment Program Manager or his/her designee.
  2. In the case of a mixture of radionuclides belonging to different radiotoxicity groups, the highest hazard group will be assigned to the mixture of radionuclides.
  3. Radiotoxicity Table I is used to determine the number of layers needed in a containment to encapsule the sample and the type of air sample to be conducted; real time or retrospective air sampling.
2575 Sand Hill Road, MS: 99, Menlo Park, California, 94025, USA Tel: 650-926-4000 | Fax: 650-926-4100