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ABSTRACT
A statistical analysis of a corrected electron trajectory through a planar undulator is
presented.  The undulator is composed of multiple modular sections each containing N
dipoles with random field strength errors and misaligned beam position monitors (BPMs)
between each section.  An analytical formula for the rms trajectory is derived to aid in the
understanding of the impacts of BPM location and alignment on the trajectory.  The
results are applied to the LCLS FEL undulator where the requirements on electron
trajectory straightness are very demanding.
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1 Introduction
The requirements on the degree of straightness of an electron trajectory through an FEL
undulator can be quite demanding.  In order to maintain good photon/electron overlap, the
trajectory must not deviate from a straight line, over a gain length, by more than a fraction
of the rms electron beam size.  For the LCLS FEL undulator [1] the rms beam size is
~30 m and the straightness requirements are of the order of 5 m over the 10-meter gain
length.  This trajectory straightness is achieved through tight quality control during
undulator fabrication and beam steering techniques during operations.  Since the location
and number of beam position monitors (BPMs) along the undulator is an important factor
in achieving a straight trajectory, it is useful to have a simple way in which to estimate the
expected rms trajectory as a function of BPM separation distance, BPM resolution and/or
alignment quality, and dipole field errors.

We derive an analytical formula which can be used to estimate the expected value of the
rms electron trajectory anywhere along a simple planar undulator after steering using
misaligned BPMs.  Misaligned quadrupole magnets can also affect the trajectory, but
steering corrections applied at or very near the quadrupoles can be used to completely
compensate this component of the trajectory.  Since the limit of this compensation is
solely dependent on the resolution and transverse alignment of the BPMs, we can ignore
quadrupole misalignments.  They are implicitly included here in the steering corrections
and the treatment of the BPM limitations.

2 Trajectory Analysis
A simple undulator section is shown schematically below in Figure 1.  The full undulator
will be composed of multiple such sections.
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Figure 1.  Simplified undulator section used to analyze the electron trajectory.  The section has a

length L with N/2 undulator periods and a BPM and steering corrector placed between each section.

Quadrupole magnets may only exist at or near the BPMs.  Their effects are implicitly addressed here.
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The section length is given by L, the undulator period is u, and there are N/2 = L/ u

periods over the section (N dipoles).  A BPM and a dipole steering element are placed
between each section.  Note, a moveable quadrupole is also a steering element.  For
simplicity, this model includes no period breaks at the BPMs and the details of dispersion
termination at the start and end of a section are ignored.  Quadrupole magnets, if used, are
assumed to be placed at or near the BPMs but are not addressed here since their
misalignments simply change the steering corrections required and the focusing is not
relevant for the single particle trajectory.  The effect of an incoming betatron oscillation is
also ignored since it can be removed at the undulator input with upstream steering or
added later to these results as an independent effect.

A perfect undulator section (and a perfect initial trajectory) will produce a nominal
reference trajectory which is composed of the small transverse oscillations normally
associated with an undulator.  This reference trajectory is subtracted off and only the
difference orbit produced by small dipole field errors and steering using inaccurate BPMs
is examined.  For illustration purposes Figure 2 shows an LCLS example eí difference
trajectory through ten adjacent sections with N (= 128) random dipole errors per section.
The trajectory has been steered exactly to zero at each section border.  The initial position
and angle at s/L = 0 are also zero.
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Figure 2.  Example steered trajectory through ten adjacent LCLS undulator sections with random

dipole errors.  The trajectory has been steered exactly to zero at each section border (s/L = 1,2,…,10).
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There are N (= 128) dipoles per section with rms relative errors of 〈( %/B0)
2〉1/2 = 0.1%,

the undulator period is u = 3 cm, the nominal peak field is B0 = 13.2 kG, and the electron
energy is 14.35 GeV.  In this simple example no BPM errors are included yet. The
resulting trajectory is a bounded random walk which is clamped to zero periodically.

A useful way to statistically describe this trajectory is with its rms as a function of
location along one section over an ensemble of such sections.  Since the full undulator is
composed of many similar sections, this rms also describes the rms trajectory along the
full undulator.

For a sinusoidal varying field with peak field B0 and relative field error ( %j/B0), each
dipole produces an additional eí transverse kick at the center of the dipole of
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where (% ) is the standard, energy dependent magnetic rigidity.  Ignoring the weak
focusing of the undulator fields, each upstream kick at location j (0 � j < N) displaces the
electron beam at a downstream location i (j < i � N) by [ij = j(si í sj) = u j(i í j)/2.
The sum over all upstream displacements, [ij; plus the displacement, c ui/2, produced
by an initial beam angle, c; plus an initial BPM-limited position, b1, produces a
trajectory at location i of

( ) 1
02

bjiix
i

j
jc

u
i +












−+= ∑

=
θθλ

 . (2)

The angle c (at j = 0) is the sum of 1) an incoming angle from the previous section plus
2) a correction angle used to steer the trajectory to the next BPM (at section’s end).  The
offset b1 is the initial eí beam position at j = 0 resulting from upstream steering of the
trajectory to the first BPM offset, b1. The BPM offset, b1, can be interpreted as a
transverse alignment error of the BPM, an electronic noise component of the BPM
reading, or both combined.

The angle, c, is now defined by steering the trajectory so that the next BPM ‘reads’ zero.
Since this next BPM has a different offset, b2, than the first BPM, the steering correction
will produce xN = b2.  Using Eq. (2) with i = N and xN = b2, and solving for the angle
produces
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Eq. (3) is now substituted into (2) and the steered trajectory at any location, i, is given by
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We now move toward a statistical analysis of the trajectory and therefore consider b1, b2,
and the set of angles j as random, uncorrelated variables.  After some rearrangement Eq.
(4) can be put into a form where one sum extends from j = 0 to i í 1, and a second
extends from j = i to N.
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This form is convenient since it is a linear combination of uncorrelated, random variables
and its variance, 〈x2〉, is simply the sum in quadrature of the components.  The variance,
or the expectation value of the square of the electron trajectory over an ensemble of
sections, is then written as
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where we have used the following relations for the random, uncorrelated dipole and BPM
errors (l = 1,2).
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The rms of the kick angles is related to the rms relative dipole errors, 〈( %/B0)
2〉1/2, by
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which is 0.263 rad for the LCLS parameters.  Eq. (6) is now reduced to a polynomial in i
by applying the summation relations
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The index, i, is now replaced by the longitudinal axis, s (= L u/2), along the undulator
section, and the number of dipoles, N (= 2L/ u), is replaced by the length of the section.
In addition, with zero-mean errors (i.e. 〈 〉 = 〈b〉 = 0) the rms trajectory is simply:
xrms = 〈x2〉1/2 and Eq. (10) becomes
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For an undulator section with many dipole periods (i.e. u/L << 1), the rms trajectory, Eq.
(11), along a section (0 � s � L) simplifies to
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The mid-section value of the rms trajectory, rmsx̂ , is taken at s = L/2 and is given by
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The rms trajectory in Eq. (12) is a function of s since the rms is taken over an ensemble of
undulator sections rather than over s.  We can also integrate out the s-dependence by
calculating the rms of Eq. (12) over the entire section.  This produces a single global rms
value for the entire undulator trajectory integrated over both s and many random seeds.
The global rms value is given by integrating the square of Eq. (12) over the section
length.
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Eq. (12) is compared in Figure 3 with computer generated trajectories using 1000 random
seeds and for various values of 〈b2〉 as indicated in the figure.  The simulations propagate
the beam trajectory continuously through 1000 consecutive undulator sections ignoring
the field gradient, but otherwise using an accurate model.  Eq. (12) is shown as a dashed
curve in each plot and the rms over 1000 steered sections is shown as a solid curve.  To
compare with the s-dependence of Eq. (12) the simulated trajectory is sampled at a fixed
location (s/L) in each undulator section and the rms is taken for every discrete value of
s/L.  Since u/L §��������� 1), the results of Eq. (11) and (12) are virtually identical and
agree well with the time consuming computer calculations.  The computer calculated
values of the global rms (rms over the entire 1000-section simulated trajectory) are also
shown at the top of each plot.  These values each agree with Eq. (14) to within <2%.
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Figure 3.  Trajectory rms over an undulator section showing the analytical result of Eq. (12) (dashed)

and a computer calculation over 1000 random seeds (solid).  The four figures are for four different

values of rms BPM errors, 〈b2〉1/2 (= 0, 0.25, 1 and 10 m), as shown on plots and u = 3 cm,

L = 1.92 m, B0 = 13.2 kG, 〈( %�%0)
2〉1/2 = 0.1%, and (% ) = (14.35 GeV)(33.3 kG-m/GeV).

3 Discussion
Eq. (14) demonstrates the somewhat obvious fact that the trajectory can be dominated by
large BPM misalignments after applying one-to-one steering.  That is, for misaligned (or
poor resolution) BPMs of
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the trajectory is BPM-dominated and the relative dipole errors play a less important role.
In this case the rms of the trajectory simplifies to
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For the LCLS, Eq. (15) evaluates to ~0.74 m at 14.35 GeV and 0.1 % rms relative dipole
errors which means that a 1- m resolution BPM, even if it is perfectly aligned, will still
dominate the trajectory.

The LCLS undulator trajectory will, however, be controlled using a beam-based
alignment algorithm [2].  The net effect of this method, not including systematic errors, is
to determine the BPM misalignments to the level of their precision (~1 m).  After the
BPMs have been aligned to a level of ¥� m, Eq. (16) then suggests a final trajectory of
1.2 m rms, which is fully adequate.  The results of the beam based alignment method
are, however, better left to the details of the simulations described in reference 2.

Alternate steering methods besides a one-to-one algorithm, may also be applied which
may change these results.  A weighted steering, where the BPMs are only zeroed to
within some reasonable band and the required corrector strengths are simultaneously
minimized using some prescribed weight, can generally produce a better trajectory if the
weights are chosen judiciously based on some rough knowledge of the initial rms
misalignments.

Finally, knowledge of the rms trajectory amplitude is not enough to fully evaluate the
FEL performance.  The frequency content of the trajectory with respect to the gain length
may also be an important characteristic which is not studied here.

4 Conclusions
The expected rms value of a one-to-one steered electron trajectory through a planar
undulator which includes BPM errors and dipole field errors can be accurately estimated
using Eq. (14).  The analysis presented here allows a quick estimation of the steered
trajectory without using time consuming computer simulations.  The method has been
simplified by assuming each section has a steering corrector and BPM, and the only
quadrupole fields are at or very near the BPMs.  The quadrupoles may be misaligned
without changing these results.  The misalignments only increase the correction strengths
required.  A more complicated undulator structure with super-periodicity, such as
multiple quadrupoles between each BPM, is not addressed here, but could be analyzed
with a modified treatment.  Other trajectory effects such as an incoming betatron
oscillation, the Earth’s magnetic field, or focusing effects within the dipole structure are
also not addressed.  An incoming oscillation can easily be added to these results as an
additional trajectory component.
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