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Why is Nanoscale Important in Dynamics? LC LS

=» Often determines mechanism of dynamics during materials processing

Misfit-Strain-Induced Domain Magnetically-Induced Inversion Domain
Walls in Ferroelectric Thin Film Wall in Nematic Liquid Crystal

C.M. Foster et al., J. Applied Physics 81, 2349 (1997)

Can be difficult to image M.J.E. O’'Rourke and E.L. Thomas, MRS Bulletin 20 (9) 29 (1995)

during processing



Nanoscale Dynamics in Condensed Matter LC LS

Atomic- and nano-scale (<100nm) of great importance in dynamics

* Basic dynamic processes occur at atomic scale

* Overall dynamics mediated by defects and collective mechanisms at the
nanoscale

Would like to observe equilibrium dynamics:

* Non-equilibrium mechanisms are typically based on microscopic processes
which occur, and are simpler to understand, at equilibrium

 Many useful properties are inherently dynamic



Advantages of Scattering Techniques L C LS

To understand dynamics, need in-situ techniques which resolve
both length and time

Determining nature of rate-limiting step from wavenumber (Q)
dependence of rate:

Rate M Q2 :

e.g. composition change
by diffusion

(conserved quantity)

Log Rate

Rate indep. of Q

e.g. deformation

by viscous flow
(non-conserved quantity)

Log Q



Scattering Techniques for Equilibrium Dynamics

LCLS

Existing techniques
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Scattering Techniques for Equilibrium Dynamics

LCLS

XPCS and XTGS
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Example: Test of Reptation Model L C LS

Dynamics of
Long-Chain Polymers

Reptation

Rouse Motlons [ = “disentanglement time”
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Experiment 1:
X-ray Photon Correlation Spectroscopy (XPCS) LC LS

In milliseconds - seconds range:
Uses high average brilliance
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Experiment 2: XPCS Using Split Pulse

LCLS

In picoseconds - nanoseconds range:
Uses high peak brilliance

/\ splitter

transversely coherent
X-ray pulse from LCLS

Contrast

\J

variable delay

10 ps U 3mm

Analyze contrast
as f(delay time)

Dt

-_———

sum of speckle patterns
from prompt and delayed pulses
recorded on CCD

1(Q,Dt)



Experiment 3:
X-Ray Transient Grating Spectroscopy

LCLS

In picoseconds - nanoseconds range:

Uses high peak intensity a = 0.1-10°
Q = 0.05-5nmr1
X-ray pulse from LCLS
015 nm’ 230 fS // \\\\
splitter AN
delay )

Drive system with chosen Q ,
observe response as f(delay time)

\S(Q, Dt)



Feasibility Issues

LCLS

Is there enough signal from a single LCLS pulse?
Is sample heating by x-ray beam a problem?

Available photons per pulse:

N = f(E,DE, A)

AVAIL

Minimum photons per pulse to give sufficient signal:

—_— Zp A EZS abs SPECKLE
- hZCZS M N MIN
el

MIN
corr

Maximum photons per pulse to give 1° temperature rise:
_ 3ksA
ES

DT

MAX MAX

abs



Heating and Signal from Unfocused Pulse LC LS




Applications of XPCS and XTGS LCLS

Simple Liquids — Transition from the hydrodynamic to the kinetic regime.

Complex Liquids — Effect of the local structure on the collective dynamics.
Polymers — Entanglement and reptative dynamics.

Glasses — Vibrational and relaxational modes in the mesoscopic space-time region.
Dynamic Critical Phenomena — Order fluctuations in alloys, liquid crystals, etc.
Charge Density Waves — Direct observation of sliding dynamics.

Quasicrystals — Nature of phason and phonon dynamics.

Surfaces — Dynamics of adatoms, islands, and steps during growth and etching.
Defects in Crystals — Diffusion, dislocation glide, domain dynamics.

Ferroelectrics — Order-disorder vs. displacive nature; correlations and size effects.



