Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

C. Schroeder*, J. Arthur^, P. Emma^, S. Reiche*, and C. Pellegrini*

^ Stanford Linear Accelerator Center* UCLA

Schematic of SASE X-ray FEL:

Disadvantages of standard SASE FEL configuration:

- Shot-to-shot fluctuations of radiation power after monochromator will increase with increasing photon energy resolution.
- Conventional x-ray optical elements (monochromator) may suffer damage due to the high output radiation power.
- Large shot-to-shot fluctuations in mean electron beam energy (0.1%) results in shotto-shot fluctuations of resonant radiation frequency.

Two-stage chirped pulse seeding for short pulse production:

Pulse duration selection: (monchromator bandwidth and amount of chirping define pulse duration)

Stabilize central frequency: (shot-to-shot jitter in mean electron beam energy)

Two-stage LCLS FEL Parameters:

LCLS FEL Parameters:

Radiation wavelength	1.5 Å
FEL parameter	4.7.10-4
Undulator type	planar
Undulator period	3 cm
Peak magnetic field	1.32 T
Undulator strength parameter	3.71
Repetition rate	120 Hz

Electron Beam Parameters:		
Electron energy	14.3 GeV	
Norm. beam emittance	1.1 mm mra	d
Average beta function	18 m	
Undulator 1 : $(L_1 = 43.20 \text{ m})$		
Peak current	3	.4 kA
Bunch duration, rms	1	20 fs
Uncorrelated energy spread, rms	0	.006 %
Correlated energy chirp (FWHM) 0	.5 %
<i>Undulator 2:</i> $(L_2 = 51.84 \text{ m})$		
Peak current	4	.0 kA
Bunch duration, rms	1	03 fs
Uncorrelated energy spread, rms	0	.008 %
CLS-TAC		4

First Undulator:

Require:

$$\left\langle P_{\rm out}^{(1)} \right\rangle << P_{\rm sat}$$

- 1. Reduce damage to optical elements of monochromator.
- 2. Energy spread of electron beam after the first undulator will satisfy

$$\sigma_{\gamma} \approx \rho \sqrt{\frac{\left\langle P_{\text{out}}^{(1)} \right\rangle}{P_{\text{sat}}}} < \rho$$

12-10-2001

Simulation results obtained using GENESIS 1.3

Monochromator: femtosecond radiation pulse generation

LCLS-TAC

Monochromator:

Bandwidth selection by Bragg diffraction in crystals [e.g., Ge(111)]:

path delay = $\Delta L = 2d \tan \theta$

Monochromator Parameters: Ge(111)	
 Nominal photon energy 	8.3 keV
Reflection angle	0.24 rad
Monochromator bandwidth, rms	1.3x10 ⁻⁴
• Power transmission (0.8/reflection)	$T_m = 41 \%$
• Tunability	4.0 – 8.5 keV
• Photon beam path delay	5 mm

Electron Beam Bypass:

Bypass Parameters:	
Total Length	32.4 m
R ₅₆	3.6 mm
Path delay	5.0 mm
Maximum displacement	20.5 cm
Deflection angle	1.68 deg
Bend magnetic field	0.4 T
Bend magnet length	3.5 m
Quadrupole strength (max)	82 T/m
Quadrupole length	50 cm

Schematic of non-isochronous achromatic chicane for electron beam bypass:

Second Undulator:

Input Electron Beam Parameters:	
Peak current	4.0 kA
Bunch duration, rms	103 fs
Energy spread, rms	0.008 %

Input Radiation Parameters.	•
Mean peak power	3.2 MW
Pulse duration, FWHM	8.7 fs
Bandwidth, rms	1.3.10-4
Intensity Fluctuations	30 %

Require:

$$P_{\rm shot} \ll \left\langle P_{\rm in}^{(2)} \right\rangle = \left\langle P_{\rm out}^{(1)} \right\rangle T_m T_{diff}$$

Radiation power from monochromator dominates over the shot noise, such that the FEL will amplify the input signal radiation (with bandwidth compared to SASE FEL bandwidth).

12-10-2001

Simulation results obtained using GENESIS 1.3

Output Radiation Parameters for Two-Stage LCLS:

Two-Stage FEL Output Radiation:	
Radiation wavelength	1.5 Å
Bandwidth, FWHM	3.1.10-4
Pulse duration, FWHM	8.7 fs
Mean peak power	23 GW
Power fluctuations, rms	2 %
RMS spot size	31 µm
RMS angular divergence	0.5 µrad

Mono-

chromator

Undulator 2

120

100

Mean Peak Radiation Power:

60

meters

80

1e+10=

1e+09=

1e+08=

1e+073

1e+06;

1e+057

.1e5ī

Û

20

40

 $\langle P \rangle$

Monochromator: short pulse limit

Monochromator with smaller bandwidth slices out shorter pulse $\delta t_{out} = \delta t_{in} \times \delta \omega_{mono} / \delta \omega_{chirp}$

But uncertainty principle gives a limit $\delta \omega_{mono} \ge 1/2$

Note that if the uncertainty principle dominates, then the output pulse has complete longitudinal coherence

For LCLS at 8 keV with 1% chirp, the minimum pulse length is about 3.5 fs fwhm, using a monochromator resolution of 3.3x10⁻⁵ rms.

Some practical monochromator options:

Crystal reflection	rms resolution	Output pulse fwhm
Ge(111)	14x10⁻⁵	9 fs
Si(111)	5.7x10⁻⁵	4.1 fs
Si(220)	2.5x10 ⁻⁵	4.1 fs

Conclusions

The Two-Stage Chirped-Beam SASE-FEL offers:

- 1. An attractive way to produce high intensity Xray pulses in the 10 to 20 fs range
- 2. Improved stability of the central frequency
- 3. Reduced load on optical elements
- 4. It can be built as an upgrade to present LCLS design