LCLS Linac Overview

Vinod Bharadwaj
Stanford Linear Accelerator Center

- Vinod Bharadwaj – Linac Overview 15 min
- Gennady Stupakov – CSR Effects- Theory 20 min
- Paul Emma – LCLS Linac Update 20 min
- Mike Borland – Update on Start-to-End Simulations 20 min
LCLS Linac Status

• Design Changes

• Operational Modes
 • Diagnostics need to work for charge range 0.1-1.0 nC, with the possibility of routinely running at 0.2 nC.
 • Run “straight through” linac beam through LCLS linac on a pulse by pulse basis (new FFTB beamline and enclosure are planned to take advantage of this).

• Bunch Compression Scheme (Emma, Borland)
 • BC1 & BC2 go back to being single 4-magnet chicanes
 • Add a single period superconducting wiggler before BC2 to kill microbunching
 • Significant additional effort into understanding CSR theory and its application to the LCLS design
 • CSR Workshop
CSR Workshop Status

ICFA Beam Dynamics mini workshop
(Future Light Sources sub-panel)

Coherent Synchrotron Radiation (CSR) and its impact on
the beam dynamics of high brightness electron beams.

January 14-18, 2002 at DESY-Zeuthen (Berlin, GERMANY)

Chairpersons: John Galayda (SLAC) and Joerg Rossbach (DESY)

Scientific Program Committee: Andreas Kabel (coordination, SLAC), Paul
Emma (SLAC), Torsten Limberg DESY)

Organizing Committee: Philippe Piot (coordination, DESY), Torsten Limberg
(DESY), Dirk Lipka (DESY), Frank Stulle (DESY)
SUBJECT:
Recent advances in modeling of coherent synchrotron radiation effects during bunch compression have underscored the importance of this phenomenon in the design of free-electron lasers and other high-brightness light sources. This ICFA Mini-Workshop (Future Light Sources sub-panel) will concentrate on computation and modeling of the effect of coherent synchrotron radiation during magnetic bunch compression.

ATTENDANCE:
Attendance is on invitation only. People wishing to attend the workshop may ask for invitation to either of the conference chairpersons.

REGISTRATION:
To register to the workshop, you should send an e-mail to christel.oevermann@desy.de before December 15th, 2001.
CSR and emittance preservation studies
- LEUTL bunch compressor working
- Mike Borland will present some results
- SPPS compressor will come online next fall and can be used for emittance studies and measurement of the longitudinal wake (Krejcik’s talk)

CDR & Cost Estimate for Linac almost complete

Transverse RF Bunch Length Monitor (PK)
- No progress since last TAC, needed for the SPPS
- transverse RF structure installed
- need to RF wave guide to connect to klystron

SLAC ESD has set up a task force to help with LCLS design issues and cost estimate – very helpful
RF Phase & Amplitude Stability

- LCLS Design has very tight tolerances for RF phase stability in the various linacs
 - need 0.1 degrees S-band in L1, L2, amplitude ~ 0.1%
 - to what timescale is the RF stable to this level
 - can the RF be controlled to this level
 - can the control system be used for software feedback to control the RF to the level required for LCLS

- Since the last TAC (Jan 2001)
 - Further measurements of LLRF performance (RA)
 - Design of ORION laser and drive system. This work is applicable to the LCLS (RA)
 - Progress on SSSB
LLRF Plan

- R&D to design software feedback loops to stabilize the RF. SPPS will be useful for this effort.
- LCLS will need to develop new Master Oscillator and ability to send a synchronization pulse to the experiments (ORION work)
- Although we think that the RF system can be made to work with a few modifications it would be nice to get RF Design Engineer to analyze the present system and make sure it is truly adequate for the job.
Start-to-End Simulation

- Ideal Final Goal - two independent programs or sets of program to simulate LCLS from the photocathode to the output of the undulator
 - Only one set of programs
- The electron bunch simulation programs will be Parmela and Elegant. Use SDDS for data transfer (both SDDS and Elegant are from Mike Borland/ANL)
- At present Parmela to 150 MeV, Elegant for the rest of the linac and beamlines, Genesis for FEL
- Works and is being used in simulations (MB, PE, HDN, MW, CL, PK, UCLA, ANL ….)
- Mike Borland will talk about S2E status …
HEP/TEST Beams with LCLS

- **LCLS scheduled for 75% time, SLAC would like**
 - Dedicated HEP runs for 25%
 - Low rate test beams on demand during LCLS running

- **Dedicated HEP Runs**
 - Separate runs
 - Changeover less than a shift

- **Test Beams during LCLS Running**
 - Arbitrary pulse stealing at low rate from LCLS
 - New replacement FFTB beam line and enclosure proposed
 - Maximum beam energy (~ 30 GeV)
 - Adds significant complication to LCLS bunch compressors
 - Need pulsed quads to linac to accommodate high energy beam
Linac Presentations

- **Gennady Stupakov – CSR Theory**
- **Paul Emma – LCLS Linac Update**
 - Superconducting wiggler reduces CSR effects
 - New full system tracking studies
 - CSR micro-bunching requires new compressors
- **Mike Borland – Update on S2E Simulations**
 - **Review and update on S2E**
 - use of Stupakov's drift-CSR formulae
 - addition of detailed simulation of photoinjector jitter
 - effects of the emittance correction quadrupoles
 - GENESIS runs take CSR instability seriously (many slices)
 - Possibility of blocking CSR with ultrathin foils
 - CSR experimental results from APS