

Stanford Synchrotron Radiation Laboratory

LCLS Physics					
Requirements Document #	1.4 - 003	Undulator	Revision 0		
Beam Based Alignment System Requirements					
Paul Emma					
(Author)	Signature		Date		
Steve Milton					
(Undulator Manager)	Signature		Date		
Heinz-Dieter Nuhn					
(Undulator Physicist)	Sig	nature	Date		
John Galayda					
(Project Director)	Sig	nature	Date		

Brief Summary:	This document summarizes the undulator system
	requirements necessary to support successful beam-based
	alignment of the undulator trajectory.

Keywords: Undulator, RF Cavity BPM, Beam Based Alignment

Key WBS#'s: 1.4

Stanford Synchrotron Radiation Laboratory

Beam-Based Alignment System Requirements

The electron trajectory through the FEL undulator must be straight to a level of about 2 microns over one FEL gain length (\sim 5 m). This level is difficult to achieve using standard component survey methods, and therefore requires a special electron beam-based alignment algorithm which samples undulator BPM readings at three different beam energies (14, 7, and 4.5 GeV).

Detailed simulations have been made which indicate that adequate beam-based alignment can be achieved if specific undulator systems are constructed, and beam stability is within, tight tolerance specifications. Table 1 summarizes these specifications for the most critical parameters, while Fig. 1 shows the simulated x and y trajectories after 3 passes of the beam-based alignment (BBA) procedure, under the conditions shown in Table 1.

Parameter Description		Unit
Maximum BPM rms position resolution (<i>x</i> and <i>y</i>)		μm
Quadrupole magnet-mover x and y positioning repeatability		μm
Initial rms uncorrelated quad and BPM alignment		μm
Initial rms correlated quad and BPM alignment		μm
Maximum BPM mean and rms calibration error		%
Maximum quadrupole mean and rms gradient error		%
Maximum quadrupole-mover mean and rms calibration error		%
Maximum random rms undulator pole field errors		%
Incoming rms shot-to-shot trajectory jitter (% of rms beam size)		%
Maximum uncertainty in knowledge of beam energy		%
BPM absolute read-back rms stability over one hour		μm
Minimum quadrupole-mover dynamic range		μm
Earth's magnetic field compensated in undulator shimming		G

Table 1: Undulator and beam specifications for the most critical parameters (quadrupole magnet gradient is 60 T/m with mean quadrupole spacing of ~ 3.9 -m).

Stanford Synchrotron Radiation Laboratory

Fig. 1. Electron *x* and *y* trajectories through undulator at 14 GeV after 3 passes of the BBA procedure. The true trajectory is in solid-blue (8.2 μ m and 4.7 μ m), the BPM read-backs are green-cirlces (4.8 μ m and 4.9 μ m), and the final quadrupole centers are red-plus-signs (21.4 μ m and 17.8 μ m). The total phase error at 1.5 Å is <330°.