

LCLS Engineering							
Specification Document #	1.3-104	Linac	Revision	0			
LCLS Kicker Magnet Specification							
C.E.Rago							
(Author)	Signature(s)		Date				
Paul Emma							
(System Physicist)	Signature		Date				
Eric Bong							
(System Manager)	Signature		Date				

Brief Summary: This specification summarizes the engineering requirements for each LCLS Kicker magnet type.

Keywords: Kicker Magnet

Key WBS#'s: 1.3.3.12

This document contains specification sheets that represent the engineering requirements for the LCLS Linac Kicker magnet. Each sheet is a superset of requirements that will define the performance of identical magnets within a design model type. A unique WBS designation, identifying the model type, has been added to the individual specification chosen to represent the model type.

All LCLS magnets will be consistent with the latest version of the Electrical Safety Guidelines in the SLAC ES&H Manuel. Particular attention must be paid to the section concerning Magnet Terminal Covers.

All LCLS magnets will conform to the LCLS Paint and Color Scheme.

All LCLS magnets will attempt to conform with, and will be reviewed against, the latest SLAC designs relating to improved magnet reliability.

All LCLS magnet design must file a SLAC DL design document in the Spires system. All new LCLS magnet designs will have individual Magnetic Measurement Procedures that must be approved by the System Physicist.

LCLS MAGNET

10-Mar-2004 MAD Deck: LCLS08MAR04

Description: WBS 1.3.3.12 Bend Magnet (BYKIK_LTU)				
Magnet common name (MAD deck):	BYKIK	Operating point		
Magnetic type (dipole/quad):	dipole	nominal bend-angle (mrad):	-1.00000	
Magnet bends in X or Y:	Y	upper-limit bend-angle (mrad):	0.0	
Used as corrector magnet (yes/no):	no	lower-limit bend-angle (mrad):	-2.0	
LCLS accelerator area:	DL2	nominal excitation current (A):	-235.163	
Z-location of cntr. w.r.t. cathode (m):	1285.000	upper-limit excitation current (A):	0.00	
Nominal beam energy (GeV):	14.100	lower-limit excitation current (A):	-567.06	
Upper-limit beam energy (GeV):	17.000	nominal integrated field (kG-m):	-0.47033	
Lower-limit beam energy (GeV):	2.000	upper-limit integrated field (kG-m):	0.000	
Magnet used for LCLS only (yes/no):	yes	lower-limit integrated field (kG-m):	-1.134	
New, Relocated, or Existing magnet:	New	nominal pole-tip field (kG):	-0.470	
Magnet		nominal bend-angle (deg):	-0.057	
design designation type:	?	nominal main coil voltage drop (V):	?	
magnet serial number:	?	NA	?	
magnet "primary,micro,unit":	?	Installation		
effective magnetic length (m):	1.0000	horiz. half-width stay-clear (mm):	10	
pole half-width (mm):	?	vert. half-height stay-clear (mm):	12	
main coil resistance (ohms):	0	field accuracy w.r.t. nom. (%):	1.00	
magnet is water-cooled (yes/no):	(unsure)	x alignment tol. (mm):	1.00	
includes trim-coil (yes/no):	(unsure)	y alignment tol. (mm):	1.00	
NA	?	z alignment tol. (mm):	5.00	
Power-supply		azimuthal roll tol. (mrad):	5.00	
power-supply name or type:	?	quad field tol. (% @ r=10 mm):	1	
main supply "primary,micro,unit":	LGPS,????,?	sext field tol. (% @ r=10 mm):	10	
Bipolar or Unipolar main supply:	Unipolar	NTC's or klixons on magnet:	?	
rms regulation tol. of main (%):	0.100	NA	?	
approx. max. required current (A):	623.8	I vs B coeff's (below) Final or Temp:	Temporary	
approx. max. voltage of main (V):	?	ρ ₀ (A):	0.000	
total N magnets on main string (>0):	1	p ₁ (A/kG):	500.000	
NA		p ₂ (A/kG^2):	0.000	
		p ₃ (A/kG^3):	0.000	
controller type:	?	p ₄ (A/kG^4):	0.000	
needs Shunt, Boost, or Trim supply:	none	p ₅ (A/kG^5):	0.000	
NA	Bipolar	p ₆ (A/kG^6):	0.000	
NA	0.01	ρ ₇ (A/kG^7):	0.000	
NA	?	p ₈ (A/kG^8):	0.000	
NA	?	p ₉ (A/kG^9):	0.000	
Comments: This is the single-beam dumper kicker magnet for abort in LTU				