

Stanford Synchrotron Radiation Laboratory

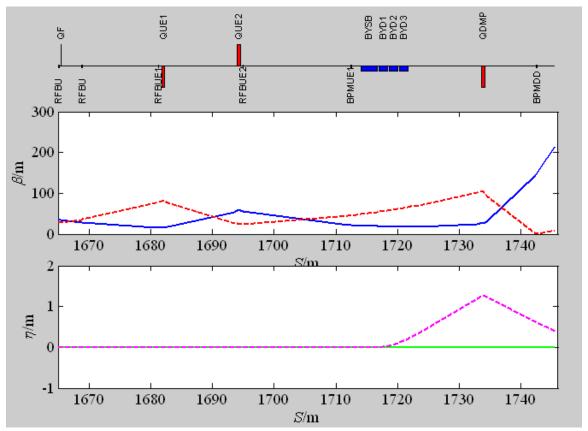
LCLS Physics						
Requirements Document #	1.3-008	Linac	Revision 0			
Electron Dump-Line Requirements						
		1	/ /			
Paul Emma	Tau		5/6/04			
(Author)	Si	gnature	Date			
Eric Bong	30	G	3/5/04			
(System Manager)	Śi	gnature	Date			
Paul Emma	Pan	16	5/6/04			
(System Physicist)	Si	gnature	Date			
John Galayda <	Tol &	Wasd	12 MAN 2004			
(Project Director)	Si	gnature	Date			

Brief Summary:

This specification summarizes physics requirements for the electron dump beamline.

Keywords:

Linac, Transport


Key WBS#'s:

1.3

Electron Dump-Line Requirements

The electron dump-line is composed of three vertical dipole magnets and three quadrupole magnets, as shown in Figure 1 below. The purpose of this beamline is to discard the 14-GeV, 1-nC electron bunch, at a repetition rate of 120 Hz (1.7 kW of average power), separating the electron beam from the x-ray FEL radiation prior to the experimental hutches.

Figure 1: Electron dump-line schematic layout with optical functions and device names. The plot starts at the last FEL undulator quadrupole ("QF") with the blue rectangles as the vertical bend magnets.

The dump-line must include:

- Vertical bending to separate the electron and photon beams
- Safety systems to protect users from the electron beam (see Safety-Dump Requirements Document)
- BPMs downstream of the undulator to support beam-based alignment in the undulator
- OTR screen monitor to measure the beam energy spread after the FEL
- Beam dump with average power rating 5 kW to allow for long term flexibility

Table 1 lists some of the main parameters of the dumpline.

PRD 1.3-008-r0 2 of 3

Table 1: Dump-line parameters (1 nC, 120 Hz).

Parameter Description	Symbol	Value	Unit
Electron energy range	E	4.5 to 14	GeV
Active length of system	L	77	m
Relative energy spread of e^- bunch (rms)	$\sigma_{\!E}\!/E$	< 0.1	%
Bend angle of each of 3 vertical dipoles	$ \theta_{\!\scriptscriptstyle \mathcal{Y}} $	1.667	deg
Maximum beam power of 1-nC bunch at 120 Hz	P_b	1.7	kW
Dump power rating	P_d	5	kW

PRD 1.3-008-r0 3 of 3