
$\begin{array}{ll}\text { Brief Summary: } & \text { This specification summarizes physics requirements for the first } \\ \text { Linac-To-Undulator (LTU) beamline. }\end{array}$

Keywords: Linac, Transport

Key WBS\#'s: 1.3

LTU Beamline Requirements

The Linac-To-Undulator (LTU) is composed of four horizontal dipole magnets, two vertical dipole magnets, and many quadrupole magnets, as shown in Figure 1 below. The purpose of this beamline is to transport a $1-\mathrm{nC}, 20-\mu \mathrm{m}$ long (rms) electron bunch, at a repetition rate of 120 Hz , at 14 GeV to the LCLS FEL undulator.

Figure 1: LTU schematic layout with optical functions and nearby device names. The blue rectangles in the map at top are the LTU dipole magnets.

The LTU beamline must also include:

- Beam diagnostics to measure:

0 the bunch length
o transverse emittances
o energy spread
o trajectory
o time-sliced emittance
o time-sliced energy spread

- Horizontal bends to allow:
o collimation of off-energy particles
o relative energy measurement with BPMs to drive energy feedback
- Collimation to protect the undulator
- Vertical bends to level the undulator (SLAC linac is pitched down by 5 mrad)

The time-sliced diagnostics are accomplished with a RF deflector in the linac and OTR monitors in the LTU.

In addition, the transverse slice-emittance of the electron bunch must be well preserved to a level of $<4 \%$ growth in both planes, especially with respect to the coherent synchrotron radiation (CSR) produced in the bends.

Table 1 lists some of the main parameters of LTU.
Table 1: LTU parameters ($1 \mathrm{nC}, 120 \mathrm{~Hz}$).

Parameter Description	Symbol	Value	Unit
Electron energy range	E	4.5 to 14	GeV
Bunch length (rms)	σ_{z}	22	$\mu \mathrm{~m}$
Active length of system	L	342	m
Relative energy spread of e^{-}bunch (rms)	σ_{E} / E	0.01	$\%$
Bend angle of each of 4 horizontal dipoles	$\left\|\theta_{B}\right\|$	0.5	deg
Bend angle of each of 2 vertical dipoles	$\left\|\theta_{y}\right\|$	2.3	mrad

